Load ECMWF data¶
Requires
[ecmwf]
optional dependencies:$ pip install pycontrails[ecmwf]
Support provided for:
ERA5 via the Copernicus Data Store using cdsapi or user provided files
HRES and ENS via MARS using ecmwf-api-client or user provided files.
For both ERA5 and HRES, we provide interfaces for accessing “pressure-level data” (fields pre-interpolated to a fixed set of pressure levels) or “model-level data” (fields retrieved on the native vertical grid and interpolated after retrieval to an arbitrary set of pressure levels). We recommend using model-level data when possible, as the resolution of pressure-level data is coarse relative to the vertical scale of ice-supersaturated regions.
Note that tools for accessing ECMWF data are not thoroughly tested in CI because they are vulnerable to upstream failures in external APIs. If you think you have found a problem please open an issue!
ERA5¶
Access¶
Requires account with Copernicus Data Portal
Provide
url
andkey
credentials on input, or refer to the CDS API Documentation for how to create~/.cdsapirc
file to configure access.
Reference¶
ERA5 Pressure Levels¶
[1]:
from pycontrails.datalib.ecmwf import ERA5
[2]:
# get a single time
era5 = ERA5(
time="2022-03-01 00:00:00",
variables=["t", "q", "u", "v", "w", "ciwc", "z", "cc"], # supports CF name or short names
pressure_levels=[200, 250, 300],
# url="https://cds.climate.copernicus.eu/api",
# key="<key>"
)
era5
[2]:
ERA5
Timesteps: ['2022-03-01 00']
Variables: ['t', 'q', 'u', 'v', 'w', 'ciwc', 'z', 'cc']
Pressure levels: [200, 250, 300]
Grid: 0.25
Dataset: reanalysis-era5-pressure-levels
Product type: reanalysis
[3]:
# get a range of time and all available pressure levels between 450 and 125 hPa
era5 = ERA5(
time=("2022-03-01 00:00:00", "2022-03-01 03:00:00"),
variables=[
"air_temperature",
"q",
"u",
"v",
"w",
"ciwc",
"z",
"cc",
], # supports CF name or short names
pressure_levels=[300, 250, 200],
# url="https://cds.climate.copernicus.eu/api",
# key="<key>"
)
era5
[3]:
ERA5
Timesteps: ['2022-03-01 00', '2022-03-01 01', '2022-03-01 02', '2022-03-01 03']
Variables: ['t', 'q', 'u', 'v', 'w', 'ciwc', 'z', 'cc']
Pressure levels: [200, 250, 300]
Grid: 0.25
Dataset: reanalysis-era5-pressure-levels
Product type: reanalysis
[4]:
# this triggers a download from CDS if file isn't in cache store
met_pl = era5.open_metdataset()
met_pl
[4]:
<xarray.Dataset> Size: 797MB Dimensions: (longitude: 1440, latitude: 721, level: 3, time: 4) Coordinates: * latitude (latitude) float64 6kB -90.0 ... 90.0 * level (level) float64 24B 200.0 250.0 300.0 * time (time) datetime64[ns] 32B 2022-03-01... * longitude (longitude) float64 12kB -180.0 ... ... air_pressure (level) float64 24B 2e+04 2.5e+04 3e+04 altitude (level) float64 24B 1.178e+04 ... 9.... Data variables: air_temperature (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> specific_humidity (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> eastward_wind (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> northward_wind (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> lagrangian_tendency_of_air_pressure (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> specific_cloud_ice_water_content (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> geopotential (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> fraction_of_cloud_cover (longitude, latitude, level, time) float64 100MB dask.array<chunksize=(1440, 721, 3, 1), meta=np.ndarray> Attributes: Conventions: CF-1.6 history: 2024-04-17 23:08:13 GMT by grib_to_netcdf-2.25.1: /... pycontrails_version: 0.50.3.dev18 provider: ECMWF dataset: ERA5 product: reanalysis
ERA5 Single Level¶
[5]:
era5 = ERA5(
time=("2022-03-01 00:00:00", "2022-03-01 03:00:00"),
variables=["tsr", "ttr"],
# url="https://cds.climate.copernicus.eu/api",
# key="<key>"
)
era5
[5]:
ERA5
Timesteps: ['2022-03-01 00', '2022-03-01 01', '2022-03-01 02', '2022-03-01 03']
Variables: ['tsr', 'ttr']
Pressure levels: [-1]
Grid: 0.25
Dataset: reanalysis-era5-single-levels
Product type: reanalysis
[6]:
met = era5.open_metdataset()
met
[6]:
<xarray.Dataset> Size: 66MB Dimensions: (level: 1, time: 4, latitude: 721, longitude: 1440) Coordinates: * level (level) float64 8B -1.0 * latitude (latitude) float64 6kB -90.0 -89.75 ... 90.0 * time (time) datetime64[ns] 32B 2022-03-01 ... 2022-... * longitude (longitude) float64 12kB -180.0 -179.8 ... 179.8 Data variables: top_net_solar_radiation (longitude, latitude, level, time) float64 33MB dask.array<chunksize=(1440, 721, 1, 1), meta=np.ndarray> top_net_thermal_radiation (longitude, latitude, level, time) float64 33MB dask.array<chunksize=(1440, 721, 1, 1), meta=np.ndarray> Attributes: Conventions: CF-1.6 history: 2024-04-24 21:36:27 GMT by grib_to_netcdf-2.28.1: /... pycontrails_version: 0.50.3.dev18 provider: ECMWF dataset: ERA5 product: reanalysis
ERA5 Model Levels¶
[7]:
from pycontrails.datalib.ecmwf import ERA5ModelLevel
Model-level data has much higher vertical resolution than pressure-level data, so we download at coarser horizontal resolution to decrease data volume.
If target pressure levels are not explicitly provided, ERA5ModelLevel
defaults to pressure levels near model levels between 20,000 and 50,000 feet. These levels are determined by reading a static file based on https://confluence.ecmwf.int/display/UDOC/L137+model+level+definitions.
[8]:
era5 = ERA5ModelLevel(
time=("2022-03-01 00:00:00", "2022-03-01 03:00:00"),
variables=["t", "q", "u", "v", "w", "ciwc"],
grid=1.0,
)
era5
[8]:
ERA5ModelLevel
Timesteps: ['2022-03-01 00', '2022-03-01 01', '2022-03-01 02', '2022-03-01 03']
Variables: ['t', 'q', 'u', 'v', 'w', 'ciwc']
Pressure levels: [121, 127, 134, 141, 148, 155, 163, 171, 180, 188, 197, 207, 217, 227, 237, 248, 260, 272, 284, 297, 310, 323, 337, 352, 367, 383, 399, 416, 433, 451]
Grid: 1.0
Dataset: reanalysis-era5-complete
Product type: reanalysis
[9]:
met_ml = era5.open_metdataset()
met_ml
[9]:
<xarray.Dataset> Size: 188MB Dimensions: (longitude: 360, latitude: 181, level: 30, time: 4) Coordinates: * time (time) datetime64[ns] 32B 2022-03-01... step timedelta64[ns] 8B 00:00:00 * level (level) float64 240B 121.0 ... 451.0 * latitude (latitude) float64 1kB -90.0 ... 90.0 valid_time (time) datetime64[ns] 32B 2022-03-01... * longitude (longitude) float64 3kB -180.0 ... 1... air_pressure (level) float32 120B 1.21e+04 ... 4.... altitude (level) float32 120B 1.497e+04 ... 6... Data variables: air_temperature (longitude, latitude, level, time) float32 31MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> specific_humidity (longitude, latitude, level, time) float32 31MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> eastward_wind (longitude, latitude, level, time) float32 31MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> northward_wind (longitude, latitude, level, time) float32 31MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> lagrangian_tendency_of_air_pressure (longitude, latitude, level, time) float32 31MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> specific_cloud_ice_water_content (longitude, latitude, level, time) float32 31MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> Attributes: GRIB_edition: 2 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_subCentre: 0 Conventions: CF-1.7 institution: European Centre for Medium-Range Weather Forecasts history: 2024-04-24T23:56 GRIB to CDM+CF via cfgrib-0.9.1... pycontrails_version: 0.50.3.dev24 provider: ECMWF dataset: ERA5 product: reanalysis
HRES¶
Access¶
Users within ECMWF Member and Co-operating States may contact their Computing Representative to obtain access to MARS. All other users may request a username and password and then get an api key.
Provide url
, key
, and email
credentials on input, or see ECMWF API Client documentation to configure local ~/.ecmwfapirc
file:
{
"url": "https://api.ecmwf.int/v1",
"email": "<email>",
"key": "<key>"
}
Reference¶
HRES Pressure Levels¶
[10]:
from datetime import datetime
from pycontrails.datalib.ecmwf import HRES
[11]:
# NOTE / TODO: Including the "ciwc" variable here, the HRES request
# fails with on historic data. However, the request seems to go through
# when the time field is recent (within the last 48 hours?)
time = datetime(2022, 3, 26, 0), datetime(2022, 3, 26, 2)
hres = HRES(
time=time,
variables=["t", "q", "u", "v", "w", "z"],
pressure_levels=[300, 250, 200],
grid=1,
# url="https://api.ecmwf.int/v1",
# key="<key>"
# email="<email>"
)
hres
[11]:
HRES
Timesteps: ['2022-03-26 00', '2022-03-26 01', '2022-03-26 02']
Variables: ['t', 'q', 'u', 'v', 'w', 'z']
Pressure levels: [200, 250, 300]
Grid: 1
Forecast time: 2022-03-26 00:00:00
Steps: [0, 1, 2]
[12]:
# convience method to see the underlying MARS request
print(hres.generate_mars_request())
retrieve,
class=od,
stream=oper,
expver=1,
date=20220326,
time=00,
type=fc,
param=t/q/u/v/w/z,
step=0/1/2,
grid=1/1,
levtype=pl,
levelist=200/250/300
[13]:
# this triggers a download if file isn't in cache store
met_pl = hres.open_metdataset()
met_pl
[13]:
<xarray.Dataset> Size: 14MB Dimensions: (longitude: 360, latitude: 181, level: 3, time: 3) Coordinates: forecast_time datetime64[ns] 8B 2022-03-26 * level (level) float64 24B 200.0 250.0 300.0 * latitude (latitude) float64 1kB -90.0 ... 90.0 * time (time) datetime64[ns] 24B 2022-03-26... * longitude (longitude) float64 3kB -180.0 ... 1... air_pressure (level) float32 12B 2e+04 2.5e+04 3e+04 altitude (level) float32 12B 1.178e+04 ... 9.... Data variables: air_temperature (longitude, latitude, level, time) float32 2MB dask.array<chunksize=(360, 181, 3, 1), meta=np.ndarray> specific_humidity (longitude, latitude, level, time) float32 2MB dask.array<chunksize=(360, 181, 3, 1), meta=np.ndarray> eastward_wind (longitude, latitude, level, time) float32 2MB dask.array<chunksize=(360, 181, 3, 1), meta=np.ndarray> northward_wind (longitude, latitude, level, time) float32 2MB dask.array<chunksize=(360, 181, 3, 1), meta=np.ndarray> lagrangian_tendency_of_air_pressure (longitude, latitude, level, time) float32 2MB dask.array<chunksize=(360, 181, 3, 1), meta=np.ndarray> geopotential (longitude, latitude, level, time) float32 2MB dask.array<chunksize=(360, 181, 3, 1), meta=np.ndarray> Attributes: GRIB_edition: 1 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_subCentre: 0 Conventions: CF-1.7 institution: European Centre for Medium-Range Weather Forecasts history: 2024-04-24T23:57 GRIB to CDM+CF via cfgrib-0.9.1... pycontrails_version: 0.50.3.dev24 provider: ECMWF dataset: HRES product: forecast radiation_accumulated: True
HRES Single Level¶
Note that accumulated parameters (i.e.
top_net_thermal_radiation
,toa_incident_solar_radiation
and other radiation parameters) are accumulated from the start of the forecast
[14]:
hres = HRES(
time=time,
variables=["tsr", "ttr"],
grid=1,
# url="https://api.ecmwf.int/v1",
# key="<key>"
# email="<email>"
)
[15]:
met = hres.open_metdataset()
met
[15]:
<xarray.Dataset> Size: 2MB Dimensions: (level: 1, time: 3, latitude: 181, longitude: 360) Coordinates: * level (level) float64 8B -1.0 forecast_time datetime64[ns] 8B 2022-03-26 surface float64 8B 0.0 * latitude (latitude) float64 1kB -90.0 -89.0 ... 89.0 90.0 * time (time) datetime64[ns] 24B 2022-03-26 ... 2022-... * longitude (longitude) float64 3kB -180.0 -179.0 ... 179.0 Data variables: top_net_solar_radiation (longitude, latitude, level, time) float32 782kB dask.array<chunksize=(360, 181, 1, 1), meta=np.ndarray> top_net_thermal_radiation (longitude, latitude, level, time) float32 782kB dask.array<chunksize=(360, 181, 1, 1), meta=np.ndarray> Attributes: GRIB_edition: 1 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_subCentre: 0 Conventions: CF-1.7 institution: European Centre for Medium-Range Weather Forecasts history: 2024-04-24T23:57 GRIB to CDM+CF via cfgrib-0.9.1... pycontrails_version: 0.50.3.dev24 provider: ECMWF dataset: HRES product: forecast radiation_accumulated: True
Specify forecast by runtime¶
Select data from specific forecast run by forecast_time
[16]:
hres = HRES(
time=("2022-03-26 01:00:00", "2022-03-26 02:00:00"),
variables=["t", "q"],
pressure_levels=[300, 250, 200],
forecast_time="2022-03-25 12:00:00",
# url="https://api.ecmwf.int/v1",
# key="<key>"
# email="<email>"
)
hres
[16]:
HRES
Timesteps: ['2022-03-26 01', '2022-03-26 02']
Variables: ['t', 'q']
Pressure levels: [200, 250, 300]
Grid: 0.25
Forecast time: 2022-03-25 12:00:00
Steps: [13, 14]
HRES Model Levels¶
[17]:
from pycontrails.datalib.ecmwf import HRESModelLevel
Similar to the model-level ERA5 demo, we download at a relatively coarse horizontal resolution to decrease data volume.
[18]:
hres = HRESModelLevel(
time=("2022-03-26 01:00:00", "2022-03-26 02:00:00"),
variables=["t", "q"],
forecast_time="2022-03-25 12:00:00",
grid=1.0,
)
hres
[18]:
HRESModelLevel
Timesteps: ['2022-03-26 01', '2022-03-26 02']
Variables: ['t', 'q']
Pressure levels: [121, 127, 134, 141, 148, 155, 163, 171, 180, 188, 197, 207, 217, 227, 237, 248, 260, 272, 284, 297, 310, 323, 337, 352, 367, 383, 399, 416, 433, 451]
Grid: 1.0
Forecast time: 2022-03-25 12:00:00
Steps: [13, 14]
[19]:
met_ml = hres.open_metdataset()
met_ml
[19]:
<xarray.Dataset> Size: 31MB Dimensions: (longitude: 360, latitude: 181, level: 30, time: 2) Coordinates: initialization_time datetime64[ns] 8B 2022-03-25T12:00:00 * time (time) datetime64[ns] 16B 2022-03-26T01:00:00 2022-0... * level (level) float64 240B 121.0 127.0 134.0 ... 433.0 451.0 * latitude (latitude) float64 1kB -90.0 -89.0 -88.0 ... 89.0 90.0 valid_time (time) datetime64[ns] 16B 2022-03-26T01:00:00 2022-0... * longitude (longitude) float64 3kB -180.0 -179.0 ... 178.0 179.0 air_pressure (level) float32 120B 1.21e+04 1.27e+04 ... 4.51e+04 altitude (level) float32 120B 1.497e+04 1.466e+04 ... 6.328e+03 Data variables: air_temperature (longitude, latitude, level, time) float32 16MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> specific_humidity (longitude, latitude, level, time) float32 16MB dask.array<chunksize=(360, 181, 30, 1), meta=np.ndarray> Attributes: GRIB_edition: 2 GRIB_centre: ecmf GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts GRIB_subCentre: 0 Conventions: CF-1.7 institution: European Centre for Medium-Range Weather Forecasts history: 2024-04-24T23:59 GRIB to CDM+CF via cfgrib-0.9.1... pycontrails_version: 0.50.3.dev24 provider: ECMWF dataset: HRES product: forecast radiation_accumulated: True
IFS¶
In development
Integrated Forecasting System from ECMWF
Access¶
IFS files must be downloaded to a local directory before accessing.
Reference¶
[20]:
from pycontrails.datalib.ecmwf import IFS
[21]:
ifs = IFS(
time=("2021-10-02 00:00:00", "2021-10-02 14:00:00"),
variables=["air_temperature"],
forecast_path="ifs",
forecast_date="2021-10-01",
)
ECMWF Variables¶
ECMWF_VARIABLES
attribute lists the supported parameters from the ECMWF Pameter DB as a list[MetVariable]
[22]:
from pycontrails.datalib.ecmwf import ECMWF_VARIABLES
[23]:
[met_var.standard_name for met_var in ECMWF_VARIABLES]
[23]:
['air_temperature',
'specific_humidity',
'geopotential',
'eastward_wind',
'northward_wind',
'lagrangian_tendency_of_air_pressure',
'relative_humidity',
'atmosphere_upward_relative_vorticity',
'fraction_of_cloud_cover',
'specific_cloud_ice_water_content',
'specific_cloud_liquid_water_content',
'potential_vorticity',
'surface_air_pressure',
'toa_incident_solar_radiation',
'top_net_solar_radiation',
'top_net_thermal_radiation',
'total_cloud_cover',
'surface_solar_downward_radiation']
[24]:
from pycontrails.datalib.ecmwf import TopNetSolarRadiation
[25]:
# ECMWF variables contain a link to the param-db entry
TopNetSolarRadiation.ecmwf_link
[25]:
'https://apps.ecmwf.int/codes/grib/param-db?id=178'
Cache Data Files to GCP¶
Requires
[gcp]
optional dependencies:$ pip install pycontrails[gcp]
By default, data files are cached to the local disk in the users Caches
directory.
To cache files to a remote Google Cloud Storage bucket, use the GCPCacheStore
ERA5¶
[26]:
from pycontrails import GCPCacheStore
[27]:
variables = ["air_temperature", "relative_humidity"]
gcp = GCPCacheStore(bucket="contrails-301217-unit-test", cache_dir="test/era5", read_only=False)
era5 = ERA5(
time=(datetime(2019, 1, 1, 0), datetime(2019, 1, 1, 2)),
variables=variables,
pressure_levels=[300, 250, 150],
cachestore=gcp,
# url="https://cds.climate.copernicus.eu/api",
# key="<key>"
)
[28]:
# download data to cache - uncomment to run
# met = era5.open_metdataset()