pycontrails.core.models¶
Physical model data structures.
Module Attributes
Model input source types |
|
Model output source types |
|
Model attribute source types |
Functions
|
Interpolate specific humidity against |
|
Interpolate |
|
Raise error for invalid |
|
Update parameter dictionary in place. |
Classes
|
Override buffers in |
|
Base class for physical models. |
|
Class for constructing model parameters. |
- class pycontrails.core.models.AdvectionBuffers(copy_source=True, interpolation_method='linear', interpolation_bounds_error=False, interpolation_fill_value=nan, interpolation_localize=False, interpolation_use_indices=False, interpolation_q_method=None, verify_met=True, downselect_met=True, met_longitude_buffer=(10.0, 10.0), met_latitude_buffer=(10.0, 10.0), met_level_buffer=(40.0, 40.0), met_time_buffer=(np.timedelta64(0, 'h'), np.timedelta64(0, 'h')))¶
Bases:
ModelParams
Override buffers in
ModelParams
for advection models.- as_dict()¶
Convert object to dictionary.
We use this method instead of dataclasses.asdict to use a shallow/unrecursive copy. This will return values as Any instead of dict.
- Returns:
dict[str
,Any]
– Dictionary version of self.
- copy_source = True¶
Copy input
source
data on eval
- downselect_met = True¶
Downselect input
MetDataset`
to region aroundsource
.
- interpolation_bounds_error = False¶
If True, points lying outside interpolation will raise an error
- interpolation_fill_value = nan¶
Used for outside interpolation value if
interpolation_bounds_error
is False
- interpolation_localize = False¶
Experimental. See
pycontrails.core.interpolation
.
- interpolation_method = 'linear'¶
Interpolation method. Supported methods include “linear”, “nearest”, “slinear”, “cubic”, and “quintic”. See
scipy.interpolate.RegularGridInterpolator
for the description of each method. Not all methods are supported by all met grids. For example, the “cubic” method requires at least 4 points per dimension.
- interpolation_q_method = None¶
Experimental. Alternative interpolation method to account for specific humidity lapse rate bias. Must be one of
None
,"cubic-spline"
, or"log-q-log-p"
. IfNone
, no special interpolation is used for specific humidity. The"cubic-spline"
method applies a custom stretching of the met interpolation table to account for the specific humidity lapse rate bias. The"log-q-log-p"
method interpolates in the log of specific humidity and pressure, then converts back to specific humidity. Only used by models calling tointerpolate_met()
.
- interpolation_use_indices = False¶
Experimental. See
pycontrails.core.interpolation
.
- met_latitude_buffer = (10.0, 10.0)¶
Met latitude buffer [WGS84] for evolution by advection.
- met_level_buffer = (40.0, 40.0)¶
Met level buffer [\(hPa\)] for evolution by advection.
- met_longitude_buffer = (10.0, 10.0)¶
Met longitude [WGS84] buffer for evolution by advection.
- met_time_buffer = (np.timedelta64(0,'h'), np.timedelta64(0,'h'))¶
Met time buffer for input to
Flight.downselect_met()
Only applies whendownselect_met
is True.
- verify_met = True¶
Call
_verify_met()
on model instantiation.
- class pycontrails.core.models.Model(met=None, params=None, **params_kwargs)¶
Bases:
ABC
Base class for physical models.
Implementing classes must implement the
eval()
method- default_params¶
Default model parameter dataclass
alias of
ModelParams
- downselect_met()¶
Downselect
met
domain to the max/min bounds ofsource
.Override this method if special handling is needed in met down-selection.
source
must be defined before callingdownselect_met()
.This method copies and re-assigns
met
usingmet.copy()
to avoid side-effects.
- Raises:
ValueError – Raised if
source
is not defined. Raised ifsource
is not aGeoVectorDataset
.
- abstract eval(source=None, **params)¶
Abstract method to handle evaluation.
Implementing classes should override call signature to overload
source
inputs and model outputs.- Parameters:
source (
ModelInput
, optional) – Dataset defining coordinates to evaluate model. Defined by implementing class, but must be a subset of ModelInput. If None,met
is assumed to be evaluation points.**params (
Any
) – Overwrite model parameters before evaluation.
- Returns:
ModelOutput
– Return type depends on implementing model
- get_source_param(key, default=<object object>, *, set_attr=True)¶
Get source data with default set by parameter key.
Retrieves data with the following hierarchy:
source.data[key]
. Returnsnp.ndarray | xr.DataArray
.source.attrs[key]
params[key]
default
In case 3., the value of
params[key]
is attached tosource.attrs[key]
.- Parameters:
- Returns:
Any
– Value(s) found for key in source data, source attrs, or model params- Raises:
KeyError – Raises KeyError if key is not found in any location and
default
is not provided.
See also
-
- property hash¶
Generate a unique hash for model instance.
- Returns:
str
– Unique hash for model instance (sha1)
- property interp_kwargs¶
Shortcut to create interpolation arguments from
params
.The output of this is useful for passing to
interpolate_met()
.- Returns:
dict[str
,Any]
– Dictionary with keys”method”
”bounds_error”
”fill_value”
”localize”
”use_indices”
”q_method”
as determined by
params
.
- abstract property long_name¶
Get long name descriptor, annotated on
xr.DataArray
outputs.
- met¶
Meteorology data
- met_required = False¶
Require meteorology is not None on __init__()
- met_variables¶
Required meteorology pressure level variables. Each element in the list is a
MetVariable
or atuple[MetVariable]
. If element is atuple[MetVariable]
, the variable depends on the data source. Only one variable in the tuple is required.
- abstract property name¶
class`Flight`.
- Type:
Get model name for use as a data key in
xr.DataArray
or
- optional_met_variables¶
Optional meteorology variables
- params¶
Instantiated model parameters, in dictionary form
- processed_met_variables¶
Set of required parameters if processing already complete on
met
input.
- require_met()¶
Ensure that
met
is a MetDataset.- Returns:
MetDataset
– Returns reference tomet
. This is helpful for type narrowingmet
when meteorology is required.- Raises:
ValueError – Raises when
met
is None.
- require_source_type(type_)¶
Ensure that
source
istype_
.- Returns:
_Source
– Returns reference tosource
. This is helpful for type narrowingsource
to specific type(s).- Raises:
ValueError – Raises when
source
is not_type_
.
- set_source(source=None)¶
Attach original or copy of input
source
tosource
.- Parameters:
source (
MetDataset | GeoVectorDataset | Flight | Iterable[Flight] | None
) – Parametersource
passed ineval()
. If None, an empty MetDataset with coordinates likemet
is set tosource
.
See also
-
meth:eval
- set_source_met(optional=False, variable=None)¶
Ensure or interpolate each required
met_variables
onsource
.For each variable in
met_variables
, checksource
for data variable with the same name.For
GeoVectorDataset
sources, try to interpolatemet
if variable does not exist.For
MetDataset
sources, try to get data frommet
if variable does not exist.- Parameters:
optional (
bool
, optional) – Includeoptional_met_variables
variable (
MetVariable | Sequence[MetVariable] | None
, optional) – MetVariable to set, frommet_variables
. If None, set all variables inmet_variables
andoptional_met_variables
ifoptional
is True.
- Raises:
ValueError – Variable does not exist and
source
is a MetDataset.
- source¶
Data evaluated in model
- pycontrails.core.models.ModelInput = pycontrails.core.met.MetDataset | pycontrails.core.vector.GeoVectorDataset | pycontrails.core.flight.Flight | collections.abc.Sequence[pycontrails.core.flight.Flight] | None¶
Model input source types
- pycontrails.core.models.ModelOutput = pycontrails.core.met.MetDataArray | pycontrails.core.met.MetDataset | pycontrails.core.vector.GeoVectorDataset | pycontrails.core.flight.Flight | list[pycontrails.core.flight.Flight]¶
Model output source types
- class pycontrails.core.models.ModelParams(copy_source=True, interpolation_method='linear', interpolation_bounds_error=False, interpolation_fill_value=nan, interpolation_localize=False, interpolation_use_indices=False, interpolation_q_method=None, verify_met=True, downselect_met=True, met_longitude_buffer=(0.0, 0.0), met_latitude_buffer=(0.0, 0.0), met_level_buffer=(0.0, 0.0), met_time_buffer=(np.timedelta64(0, 'h'), np.timedelta64(0, 'h')))¶
Bases:
object
Class for constructing model parameters.
Implementing classes must still use the
@dataclass
operator.- as_dict()¶
Convert object to dictionary.
We use this method instead of dataclasses.asdict to use a shallow/unrecursive copy. This will return values as Any instead of dict.
- Returns:
dict[str
,Any]
– Dictionary version of self.
- copy_source = True¶
Copy input
source
data on eval
- downselect_met = True¶
Downselect input
MetDataset`
to region aroundsource
.
- interpolation_bounds_error = False¶
If True, points lying outside interpolation will raise an error
- interpolation_fill_value = nan¶
Used for outside interpolation value if
interpolation_bounds_error
is False
- interpolation_localize = False¶
Experimental. See
pycontrails.core.interpolation
.
- interpolation_method = 'linear'¶
Interpolation method. Supported methods include “linear”, “nearest”, “slinear”, “cubic”, and “quintic”. See
scipy.interpolate.RegularGridInterpolator
for the description of each method. Not all methods are supported by all met grids. For example, the “cubic” method requires at least 4 points per dimension.
- interpolation_q_method = None¶
Experimental. Alternative interpolation method to account for specific humidity lapse rate bias. Must be one of
None
,"cubic-spline"
, or"log-q-log-p"
. IfNone
, no special interpolation is used for specific humidity. The"cubic-spline"
method applies a custom stretching of the met interpolation table to account for the specific humidity lapse rate bias. The"log-q-log-p"
method interpolates in the log of specific humidity and pressure, then converts back to specific humidity. Only used by models calling tointerpolate_met()
.
- interpolation_use_indices = False¶
Experimental. See
pycontrails.core.interpolation
.
- met_latitude_buffer = (0.0, 0.0)¶
Met latitude buffer for input to
Flight.downselect_met()
, in WGS84 coordinates. Only applies whendownselect_met
is True.
- met_level_buffer = (0.0, 0.0)¶
Met level buffer for input to
Flight.downselect_met()
, in [\(hPa\)]. Only applies whendownselect_met
is True.
- met_longitude_buffer = (0.0, 0.0)¶
Met longitude buffer for input to
Flight.downselect_met()
, in WGS84 coordinates. Only applies whendownselect_met
is True.
- met_time_buffer = (np.timedelta64(0,'h'), np.timedelta64(0,'h'))¶
Met time buffer for input to
Flight.downselect_met()
Only applies whendownselect_met
is True.
- verify_met = True¶
Call
_verify_met()
on model instantiation.
- pycontrails.core.models.SourceType = pycontrails.core.met.MetDataset | pycontrails.core.vector.GeoVectorDataset | pycontrails.core.flight.Flight | pycontrails.core.fleet.Fleet¶
Model attribute source types
- pycontrails.core.models.interpolate_gridded_specific_humidity(mda, vector, q_method, log_applied, **interp_kwargs)¶
Interpolate specific humidity against
vector
with experimentalq_method
.- Parameters:
mda (
MetDataArray
) – MetDataArray of specific humidity.vector (
GeoVectorDataset
) – Flight or GeoVectorDataset instanceq_method (
{None, "cubic-spline", "log-q-log-p"}
) – Experimental method to use for interpolating specific humidity.log_applied (
bool
) – Whether or not a log transform was applied to specific humidity.**interp_kwargs (
Any,
) – Additional keyword only arguments passed to intersect_met.
- Returns:
numpy.ndarray
– Interpolated values.
- pycontrails.core.models.interpolate_met(met, vector, met_key, vector_key=None, *, q_method=None, **interp_kwargs)¶
Interpolate
vector
againstmet
gridded data.If
vector_key
(=``met_key`` by default) already exists, return values atvector_key
.Mutates parameter
vector
in place by attaching new key and returns values.- Parameters:
met (
MetDataset | None
) – Met data to interpolate againstvector (
GeoVectorDataset
) – Flight or GeoVectorDataset instancemet_key (
str
) – Key of met variable inmet
.vector_key (
str
, optional) – Key of variable to attach tovector
. By default, usemet_key
.q_method (
str
, optional) – Experimental method to use for interpolating specific humidity. SeeModelParams
for more information.**interp_kwargs (
Any,
) – Additional keyword only arguments passed toGeoVectorDataset.intersect_met()
. For example,level=[...]
.
- Returns:
npt.NDArray[np.floating]
– Interpolated values.- Raises:
KeyError – Parameter
met_key
not found inmet
.
- pycontrails.core.models.raise_invalid_q_method_error(q_method)¶
Raise error for invalid
q_method
.- Parameters:
q_method (
str
) –q_method
to raise error for.- Raises:
ValueError –
q_method
is not one ofNone
,"log-q-log-p"
, or"cubic-spline"
.
- pycontrails.core.models.update_param_dict(param_dict, new_params)¶
Update parameter dictionary in place.
- Parameters:
param_dict (
dict[str
,Any]
) – Active model parameter dictionarynew_params (
dict[str
,Any]
) – Model parameters to update, as a dictionary
- Raises:
KeyError – Raises when
new_params
key is not found inparam_dict