pycontrails.models.pcc¶
Probability of persistent contrail coverage (PCC).
Classes
|
Potential Contrail Coverage Algorithm. |
|
PCC Model Parameters. |
- class pycontrails.models.pcc.PCC(met, surface, params=None, **params_kwargs)¶
Bases:
Model
Potential Contrail Coverage Algorithm.
Determines the potential of ambient atmosphere to allow contrail formation at grid points.
- Parameters:
met (
MetDataset
) – Dataset containingmet_variables
variables.surface (
MetDataset
) – Surface level dataset containing “air_pressure”.params (
dict[str
,Any]
, optional) – Override PCC model parameters with dictionary. SeePCCParams
for model parameters.**params_kwargs – Override PCC model parameters with keyword arguments. See
PCCParams
for model parameters.
Notes
Based on Ponater et al. (2002)
- Slingo1980(T, p, iwc, q, rh_crit_old, rh_crit_new)¶
Apply Slingo scheme described in Wood and Field, 1999.
Relationships between Total Water, Condensed Water, and Cloud Fraction in Stratiform Clouds Examined Using Aircraft Data
- Parameters:
T (
xarray:DataArray
) – Air Temperature, [\(K\)]p (
xarray:DataArray
) – Air Pressure, [\(Pa\)]iwc (
xarray:DataArray
) – Cloud ice water content, [\(kg \ kg^{-1}\)]q (
xarray:DataArray
) – Specific humidityrh_crit_old (
xarray:DataArray
) – Critical relative humidity, [\([0 - 1]\)]rh_crit_new (
xarray:DataArray
) – Critical relative humidity, [\([0 - 1]\)]
- Returns:
xarray:DataArray
– Probability of cirrus formation, [\([0 - 1]\)]
- Smith1990(T, p, iwc, q, rh_crit_old, rh_crit_new)¶
Apply Smith Scheme described in Rap et al. (2009).
Parameterization of contrails in the UK Met OfficeClimate Model;
- Parameters:
T (
xarray:DataArray
) – Air Temperature, [\(K\)]p (
xarray:DataArray
) – Air Pressure, [\(Pa\)]iwc (
xarray:DataArray
) – Cloud ice water content, [\(kg \ kg^{-1}\)]q (
xarray:DataArray
) – Specific humidityrh_crit_old (
xarray:DataArray
) – Critical relative humidity, [\([0 - 1]\)]rh_crit_new (
xarray:DataArray
) – Critical relative humidity, [\([0 - 1]\)]
- Returns:
xarray:DataArray
– Probability of cirrus formation, [\([0 - 1]\)]
- Sundqvist1989(T, p, iwc, q, rh_crit_old, rh_crit_new)¶
Apply Sundqvist scheme described in Ponater et al. (2002).
Contrails in a comprehensive global climate model: Parameterization and radiative forcing results
- Parameters:
T (
xarray:DataArray
) – Air Temperature, [\(K\)]p (
xarray:DataArray
) – Air Pressure, [\(Pa\)]iwc (
xarray:DataArray
) – Cloud ice water content, [\(kg \ kg^{-1}\)]q (
xarray:DataArray
) – Specific humidityrh_crit_old (
xarray:DataArray
) – Critical relative humidity, [\([0 - 1]\)]rh_crit_new (
xarray:DataArray
) – Critical relative humidity, [\([0 - 1]\)]
- Returns:
xarray:DataArray
– Probability of cirrus formation, [\([0 - 1]\)]
- b_contr()¶
Calculate critical relative humidity threshold of contrail formation.
- Returns:
xarray.DataArray
– Critical relative humidity of contrail formation, [\([0 - 1]\)]
Notes
Instead of using a prescribed threshold relative humidity for
rh_crit_old
the threshold relative humidity now change with pressure.This equation is described in Roeckner et al. 1996, Eq.57 THE ATMOSPHERIC GENERAL CIRCULATION MODEL ECHAM-4: MODEL DESCRIPTION AND SIMULATION OF PRESENT-DAY CLIMATE
- eval(source=None, **params)¶
Evaluate PCC model.
Currently only implemented to work on the
met
data input.- Parameters:
source (
MetDataset | None
, optional) –- Input MetDataset.
If None, evaluates at the
met
grid points.
**params (
Any
) – Overwrite model parameters before eval
- Returns:
MetDataArray
– PCC model output
- long_name = 'Potential contrail coverage'¶
- met_variables = (MetVariable(short_name='t', standard_name='air_temperature', long_name='Air Temperature', level_type='isobaricInhPa', ecmwf_id=130, grib1_id=11, grib2_id=(0, 0, 0), units='K', amip='ta', description='Air temperature is the bulk temperature of the air, not the surface (skin) temperature.'), MetVariable(short_name='q', standard_name='specific_humidity', long_name='Specific Humidity', level_type='isobaricInhPa', ecmwf_id=133, grib1_id=51, grib2_id=(0, 1, 0), units='kg kg**-1', amip='hus', description='Specific means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air.'), MetVariable(short_name='ciwc', standard_name='specific_cloud_ice_water_content', long_name='Specific cloud ice water content', level_type='isobaricInhPa', ecmwf_id=247, grib1_id=None, grib2_id=(0, 1, 84), units='kg kg**-1', amip=None, description="This parameter is the mass of cloud ice particles per kilogram of the total mass of moist air. The 'total mass of moist air' is the sum of the dry air, water vapour, cloud liquid, cloud ice, rain and falling snow. This parameter represents the average value for a grid box."))¶
Required meteorology pressure level variables. Each element in the list is a
MetVariable
or atuple[MetVariable]
. If element is atuple[MetVariable]
, the variable depends on the data source. Only one variable in the tuple is required.
- name = 'pcc'¶
- surface¶
- class pycontrails.models.pcc.PCCParams(copy_source=True, interpolation_method='linear', interpolation_bounds_error=False, interpolation_fill_value=nan, interpolation_localize=False, interpolation_use_indices=False, interpolation_q_method=None, verify_met=True, downselect_met=True, met_longitude_buffer=(0.0, 0.0), met_latitude_buffer=(0.0, 0.0), met_level_buffer=(0.0, 0.0), met_time_buffer=(np.timedelta64(0, 'h'), np.timedelta64(0, 'h')), cloud_model='Smith1990', rh_crit_factor=0.7, fuel=<factory>, engine_efficiency=0.35, humidity_scaling=None)¶
Bases:
ModelParams
PCC Model Parameters.
- cloud_model = 'Smith1990'¶
Cloud model Options include “Smith1990”, “Sundqvist1989”, “Slingo1980”
- engine_efficiency = 0.35¶
Engine efficiency
- fuel¶
Fuel type
- humidity_scaling = None¶
Humidity scaling
- rh_crit_factor = 0.7¶
Critical RH Factor for the model to cirrus clouds