pycontrails.core.fleet¶
A single data structure encompassing a sequence of Flight
instances.
Classes
|
Data structure for holding a sequence of |
- class pycontrails.core.fleet.Fleet(data=None, *, longitude=None, latitude=None, altitude=None, altitude_ft=None, level=None, time=None, attrs=None, copy=True, fuel=None, fl_attrs=None, **attrs_kwargs)¶
Bases:
Flight
Data structure for holding a sequence of
Flight
instances.Flight waypoints are merged into a single
Flight
-like object.- clean_and_resample(freq='1min', fill_method='geodesic', geodesic_threshold=100000.0, nominal_rocd=0.0, kernel_size=17, cruise_threshold=120, force_filter=False, drop=True, keep_original_index=False, climb_descend_at_end=False)¶
Resample and (possibly) filter a flight trajectory.
Waypoints are resampled according to the frequency
freq
. If the original flight data has a short sampling period, filter_altitude will also be called to clean the data. Large gaps in trajectories may be interpolated as step climbs through _altitude_interpolation.- Parameters:
freq (
str
, optional) – Resampling frequency, by default “1min”fill_method (
{"geodesic", "linear"}
, optional) – Choose between"geodesic"
and"linear"
, by default"geodesic"
. In geodesic mode, large gaps between waypoints are filled with geodesic interpolation and small gaps are filled with linear interpolation. In linear mode, all gaps are filled with linear interpolation.geodesic_threshold (
float
, optional) – Threshold for geodesic interpolation, [\(m\)]. If the distance between consecutive waypoints is under this threshold, values are interpolated linearly.nominal_rocd (
float
, optional) – Nominal rate of climb / descent for aircraft type. Defaults toconstants.nominal_rocd
.kernel_size (
int
, optional) – Passed directly toscipy.signal.medfilt()
, by default 11. Passed also toscipy.signal.medfilt()
cruise_theshold (
float
, optional) – Minimal length of time, in seconds, for a flight to be in cruise to apply median filterforce_filter (
bool
, optional) – If set to true, meth:filter_altitude will always be called. otherwise, it will only be called if the flight has a median sample period under 10 secondsdrop (
bool
, optional) – Drop any columns that are not resampled and filled. Defaults toTrue
, dropping all keys outside of “time”, “latitude”, “longitude” and “altitude”. If set to False, the extra keys will be kept but filled withnan
orNone
values, depending on the data type.keep_original_index (
bool
, optional) – Keep the original index of theFlight
in addition to the new resampled index. Defaults toFalse
. .. versionadded:: 0.45.2climb_or_descend_at_end (
bool
) – If true, the climb or descent will be placed at the end of each segment rather than the start. Default is false (climb or descent immediately).
- Returns:
Flight
– Filled Flight
- copy(**kwargs)¶
Return a copy of this instance.
- Parameters:
**kwargs (
Any
) – Additional keyword arguments passed into the constructor of the returned class.- Returns:
Self
– Copy of class
- filter(mask, copy=True, **kwargs)¶
Filter
data
according to a boolean arraymask
.Entries corresponding to
mask == True
are kept.- Parameters:
mask (
npt.NDArray[np.bool_]
) – Boolean array with compatible shape.copy (
bool
, optional) – Copy data on filter. Defaults to True. See numpy best practices for insight into whether copy is appropriate.**kwargs (
Any
) – Additional keyword arguments passed into the constructor of the returned class.
- Returns:
Self
– Containing filtered data- Raises:
TypeError – If
mask
is not a boolean array.
- final_waypoints¶
- fl_attrs¶
- classmethod from_seq(seq, broadcast_numeric=True, copy=True, attrs=None)¶
Instantiate a
Fleet
instance from an iterable ofFlight
.Changed in version 0.49.3: Empty flights are now filtered out before concatenation.
- Parameters:
seq (
Iterable[Flight]
) – An iterable ofFlight
instances.broadcast_numeric (
bool
, optional) – If True, broadcast numeric attributes to data variables.copy (
bool
, optional) – If True, make copy of each flight instance inseq
.attrs (
dict[str
,Any] | None
, optional) – Global attribute to attach to instance.
- Returns:
Fleet
– A Fleet instance made from concatenating theFlight
instances inseq
. The fuel type is taken from the firstFlight
inseq
.
- property max_distance_gap¶
Return maximum distance gap between waypoints along flight trajectory.
Distance is calculated based on WGS84 geodesic.
- Returns:
float
– Maximum distance between waypoints, [\(m\)]
Examples
>>> import numpy as np >>> fl = Flight( ... longitude=np.linspace(20, 30, 200), ... latitude=np.linspace(40, 30, 200), ... altitude=11000 * np.ones(200), ... time=pd.date_range('2021-01-01T12', '2021-01-01T14', periods=200), ... ) >>> fl.max_distance_gap np.float64(7391.27...)
- resample_and_fill(*args, **kwargs)¶
Resample and fill flight trajectory with geodesics and linear interpolation.
Waypoints are resampled according to the frequency
freq
. Values fordata
columnslongitude
,latitude
, andaltitude
are interpolated.Resampled waypoints will include all multiples of
freq
between the flight start and end time. For example, when resampling to a frequency of 1 minute, a flight that starts at 2020/1/1 00:00:59 and ends at 2020/1/1 00:01:01 will return a single waypoint at 2020/1/1 00:01:00, whereas a flight that starts at 2020/1/1 00:01:01 and ends at 2020/1/1 00:01:59 will return an empty flight.- Parameters:
freq (
str
, optional) – Resampling frequency, by default “1min”fill_method (
{"geodesic", "linear"}
, optional) – Choose between"geodesic"
and"linear"
, by default"geodesic"
. In geodesic mode, large gaps between waypoints are filled with geodesic interpolation and small gaps are filled with linear interpolation. In linear mode, all gaps are filled with linear interpolation.geodesic_threshold (
float
, optional) – Threshold for geodesic interpolation, [\(m\)]. If the distance between consecutive waypoints is under this threshold, values are interpolated linearly.nominal_rocd (
float | None
, optional) – Nominal rate of climb / descent for aircraft type. Defaults toconstants.nominal_rocd
.drop (
bool
, optional) – Drop any columns that are not resampled and filled. Defaults toTrue
, dropping all keys outside of “time”, “latitude”, “longitude” and “altitude”. If set to False, the extra keys will be kept but filled withnan
orNone
values, depending on the data type.keep_original_index (
bool
, optional) – Keep the original index of theFlight
in addition to the new resampled index. Defaults toFalse
. .. versionadded:: 0.45.2climb_or_descend_at_end (
bool
) – If true, the climb or descent will be placed at the end of each segment rather than the start. Default is false (climb or descent immediately).
- Returns:
Flight
– Filled Flight- Raises:
ValueError – Unknown
fill_method
Examples
>>> from datetime import datetime >>> import pandas as pd
>>> df = pd.DataFrame() >>> df['longitude'] = [0, 0, 50] >>> df['latitude'] = 0 >>> df['altitude'] = 0 >>> df['time'] = [datetime(2020, 1, 1, h) for h in range(3)]
>>> fl = Flight(df) >>> fl.dataframe longitude latitude altitude time 0 0.0 0.0 0.0 2020-01-01 00:00:00 1 0.0 0.0 0.0 2020-01-01 01:00:00 2 50.0 0.0 0.0 2020-01-01 02:00:00
>>> fl.resample_and_fill('10min').dataframe # resample with 10 minute frequency longitude latitude altitude time 0 0.000000 0.0 0.0 2020-01-01 00:00:00 1 0.000000 0.0 0.0 2020-01-01 00:10:00 2 0.000000 0.0 0.0 2020-01-01 00:20:00 3 0.000000 0.0 0.0 2020-01-01 00:30:00 4 0.000000 0.0 0.0 2020-01-01 00:40:00 5 0.000000 0.0 0.0 2020-01-01 00:50:00 6 0.000000 0.0 0.0 2020-01-01 01:00:00 7 8.333333 0.0 0.0 2020-01-01 01:10:00 8 16.666667 0.0 0.0 2020-01-01 01:20:00 9 25.000000 0.0 0.0 2020-01-01 01:30:00 10 33.333333 0.0 0.0 2020-01-01 01:40:00 11 41.666667 0.0 0.0 2020-01-01 01:50:00 12 50.000000 0.0 0.0 2020-01-01 02:00:00
- segment_angle()¶
Calculate sine and cosine for the angle between each segment and the longitudinal axis.
This is different from the usual navigational angle between two points known as bearing.
Bearing in 3D spherical coordinates is referred to as azimuth.
(lon_2, lat_2) X /| / | / | / | / | / | / | (lon_1, lat_1) X -------> longitude (x-axis)
- Returns:
npt.NDArray[np.float64]
,npt.NDArray[np.float64]
– Returnssin(a), cos(a)
, wherea
is the angle between the segment and the longitudinal axis. The final values are of both arrays arenp.nan
.
See also
geo.segment_angle()
,units.heading_to_longitudinal_angle()
,segment_azimuth()
,geo.forward_azimuth()
Examples
>>> from pycontrails import Flight >>> fl = Flight( ... longitude=np.array([1, 2, 3, 5, 8]), ... latitude=np.arange(5), ... altitude=np.full(shape=(5,), fill_value=11000), ... time=pd.date_range('2021-01-01T12', '2021-01-01T14', periods=5), ... ) >>> sin, cos = fl.segment_angle() >>> sin array([0.70716063, 0.70737598, 0.44819424, 0.31820671, nan])
>>> cos array([0.70705293, 0.70683748, 0.8939362 , 0.94802136, nan])
- segment_azimuth()¶
Calculate (forward) azimuth at each waypoint.
Method calls pyproj.Geod.inv, which is slow. See geo.forward_azimuth for an outline of a faster implementation.
Changed in version 0.33.7: The dtype of the output now matches the dtype of
self["longitude"]
.- Returns:
npt.NDArray[np.float64]
– Array of azimuths.
See also
segment_angle()
,geo.forward_azimuth()
- segment_groundspeed(*args, **kwargs)¶
Return groundspeed across segments.
Calculate by dividing the horizontal segment length by the difference in waypoint times.
- Parameters:
smooth (
bool
, optional) – Smooth airspeed with Savitzky-Golay filter. Defaults to False.window_length (
int
, optional) – Passed directly toscipy.signal.savgol_filter()
, by default 7.polyorder (
int
, optional) – Passed directly toscipy.signal.savgol_filter()
, by default 1.
- Returns:
npt.NDArray[np.float64]
– Groundspeed of the segment, [\(m s^{-1}\)]
- segment_length()¶
Compute spherical distance between flight waypoints.
Helper function used in
length()
andlength_met()
. np.nan appended so the length of the output is the same as number of waypoints.- Returns:
npt.NDArray[np.float64]
– Array of distances in [\(m\)] between waypoints
Examples
>>> from pycontrails import Flight >>> fl = Flight( ... longitude=np.array([1, 2, 3, 5, 8]), ... latitude=np.arange(5), ... altitude=np.full(shape=(5,), fill_value=11000), ... time=pd.date_range('2021-01-01T12', '2021-01-01T14', periods=5), ... ) >>> fl.segment_length() array([157255.03346286, 157231.08336815, 248456.48781503, 351047.44358851, nan])
See also
- segment_true_airspeed(u_wind=0.0, v_wind=0.0, smooth=True, window_length=7, polyorder=1)¶
Calculate the true airspeed [\(m / s\)] from the ground speed and horizontal winds.
Because Flight.segment_true_airspeed uses a smoothing pattern, waypoints in
data
are not independent. Moreover, we expect the final waypoint of each flight to have a nan value associated to any segment property. Consequently, we need to define a custom method here to deal with these issues when applying this method on a fleet of flights.See docstring for
Flight.segment_true_airspeed()
.- Raises:
RuntimeError – Unexpected key __u_wind or __v_wind found in
data
.
- sort(by)¶
Sort data by key(s).
This method always creates a copy of the data by calling
pandas.DataFrame.sort_values()
.- Parameters:
by (
str | list[str]
) – Key or list of keys to sort by.- Returns:
Self
– Instance with sorted data.