pycontrails.models.ps_model.ps_nominal_grid¶
- pycontrails.models.ps_model.ps_nominal_grid(aircraft_type, *, level=None, air_temperature=None, q_fuel=43130000.0, mach_number=None, maxiter=10, engine_deterioration_factor=0.025)¶
Calculate the nominal performance grid for a given aircraft type.
This function is similar to the
PSGrid
model, but it doesn’t require meteorological data. Instead, the ambient air temperature can be computed from the ISA model or passed as an argument.- Parameters:
aircraft_type (
str
) – The aircraft type.level (
npt.NDArray[np.floating] | None
, optional) – The pressure level, [\(hPa\)]. If None, theair_temperature
argument must be axarray.DataArray
with anair_pressure
coordinate.air_temperature (
xr.DataArray | npt.NDArray[np.floating] | None
, optional) – The ambient air temperature, [\(K\)]. If None (default), the ISA temperature is computed from thelevel
argument. If axarray.DataArray
, anair_pressure
coordinate must be present and thelevel
argument must be None to avoid ambiguity. If anumpy.ndarray
is passed, it is assumed to be 1 dimensional with the same shape as thelevel
argument.q_fuel (
float
, optional) – The fuel heating value, by defaultJetA.q_fuel
mach_number (
float | None
, optional) – The Mach number. If None (default), the PS design Mach number is used.maxiter (
int
, optional) – Passed intoscipy.optimize.newton()
.engine_deterioration_factor (
float
, optional) – The engine deterioration factor, by defaultPSGridParams.engine_deterioration_factor
.
- Returns:
xarray.Dataset
– The nominal performance grid. The grid is indexed by altitude and Mach number. Contains the following variables:"fuel_flow"
: Fuel flow rate, [\(kg/s\)]"engine_efficiency"
: Engine efficiency"aircraft_mass"
: Aircraft mass at which the engine efficiency is maximized, [\(kg\)]
- Raises:
KeyError – If “aircraft_type” is not supported by the PS model.
See also
ps_nominal_optimize_mach
Examples
>>> level = np.arange(200, 300, 10, dtype=float)
>>> # Compute nominal aircraft performance assuming ISA conditions >>> # and the design Mach number >>> perf = ps_nominal_grid("A320", level=level) >>> perf.attrs["mach_number"] 0.753
>>> perf.to_dataframe().round({"aircraft_mass": 0, "engine_efficiency": 3, "fuel_flow": 3}) aircraft_mass engine_efficiency fuel_flow level 200.0 58416.0 0.301 0.576 210.0 61618.0 0.301 0.604 220.0 64830.0 0.301 0.633 230.0 68026.0 0.301 0.663 240.0 71188.0 0.301 0.695 250.0 71775.0 0.301 0.703 260.0 71766.0 0.300 0.708 270.0 71752.0 0.300 0.715 280.0 71736.0 0.299 0.722 290.0 71717.0 0.298 0.730
>>> # Now compute it for a higher Mach number >>> perf = ps_nominal_grid("A320", level=level, mach_number=0.78) >>> perf.to_dataframe().round({"aircraft_mass": 0, "engine_efficiency": 3, "fuel_flow": 3}) aircraft_mass engine_efficiency fuel_flow level 200.0 58473.0 0.307 0.601 210.0 60626.0 0.307 0.621 220.0 63818.0 0.307 0.651 230.0 66994.0 0.307 0.682 240.0 70130.0 0.307 0.714 250.0 71703.0 0.307 0.733 260.0 71690.0 0.306 0.739 270.0 71673.0 0.306 0.747 280.0 71653.0 0.305 0.756 290.0 71631.0 0.304 0.766