pycontrails.models.ps_model.ps_nominal_grid¶
- pycontrails.models.ps_model.ps_nominal_grid(aircraft_type, *, level=None, air_temperature=None, q_fuel=43130000.0, mach_number=None, maxiter=10)¶
Calculate the nominal performance grid for a given aircraft type.
This function is similar to the
PSGrid
model, but it doesn’t require meteorological data. Instead, the ambient air temperature can be computed from the ISA model or passed as an argument.- Parameters:
aircraft_type (
str
) – The aircraft type.level (
npt.NDArray[np.float64] | None
, optional) – The pressure level, [\(hPa\)]. If None, theair_temperature
argument must be axarray.DataArray
with alevel
coordinate.air_temperature (
xr.DataArray | npt.NDArray[np.float64] | None
, optional) – The ambient air temperature, [\(K\)]. If None (default), the ISA temperature is computed from thelevel
argument. If axarray.DataArray
, thelevel
coordinate must be present and thelevel
argument must be None to avoid ambiguity. If anumpy.ndarray
is passed, it is assumed to be 1 dimensional with the same shape as thelevel
argument.q_fuel (
float
, optional) – The fuel heating value, by defaultJetA.q_fuel
mach_number (
float | None
, optional) – The Mach number. If None (default), the PS design Mach number is used.maxiter (
int
, optional) – Passed intoscipy.optimize.newton()
.
- Returns:
xarray.Dataset
– The nominal performance grid. The grid is indexed by altitude and Mach number. Contains the following variables:"fuel_flow"
: Fuel flow rate, [\(kg/s\)]"engine_efficiency"
: Engine efficiency"aircraft_mass"
: Aircraft mass at which the engine efficiency is maximized, [\(kg\)]
- Raises:
KeyError – If “aircraft_type” is not supported by the PS model.
Examples
>>> level = np.arange(200, 300, 10, dtype=float)
>>> # Compute nominal aircraft performance assuming ISA conditions >>> # and the design Mach number >>> perf = ps_nominal_grid("A320", level=level) >>> perf.attrs["mach_number"] 0.753
>>> perf.to_dataframe() aircraft_mass engine_efficiency fuel_flow level 200.0 58416.230843 0.300958 0.575635 210.0 61617.676624 0.300958 0.604417 220.0 64829.702583 0.300958 0.633199 230.0 68026.415695 0.300958 0.662998 240.0 71187.897060 0.300958 0.694631 250.0 71775.399825 0.300824 0.703349 260.0 71765.716737 0.300363 0.708259 270.0 71752.405400 0.299671 0.714514 280.0 71736.129079 0.298823 0.721878 290.0 71717.392170 0.297875 0.730169
>>> # Now compute it for a higher Mach number >>> perf = ps_nominal_grid("A320", level=level, mach_number=0.78) >>> perf.to_dataframe() aircraft_mass engine_efficiency fuel_flow level 200.0 57941.825236 0.306598 0.596100 210.0 60626.062062 0.306605 0.621331 220.0 63818.498306 0.306605 0.650918 230.0 66993.691517 0.306605 0.681551 240.0 70129.930503 0.306605 0.714069 250.0 71703.009059 0.306560 0.732944 260.0 71690.188652 0.306239 0.739276 270.0 71673.392089 0.305694 0.747052 280.0 71653.431321 0.304997 0.755990 290.0 71630.901315 0.304201 0.765883