pycontrails.models.issr¶
Ice super-saturated regions (ISSR).
Functions
|
Calculate ice super-saturated regions. |
Classes
|
Ice super-saturated regions over a |
|
Default ISSR model parameters. |
- class pycontrails.models.issr.ISSR(met=None, params=None, **params_kwargs)¶
Bases:
ModelIce super-saturated regions over a
Flighttrajectory orMetDatasetgrid.This model calculates points where the relative humidity over ice is greater than 1.
- Parameters:
met (
MetDataset) – Dataset containing “air_temperature” and “specific_humidity” variables
Examples
>>> from datetime import datetime >>> from pycontrails.datalib.ecmwf import ERA5 >>> from pycontrails.models.issr import ISSR >>> from pycontrails.models.humidity_scaling import ConstantHumidityScaling
>>> # Get met data >>> time = datetime(2022, 3, 1, 0), datetime(2022, 3, 1, 2) >>> variables = ["air_temperature", "specific_humidity"] >>> pressure_levels = [200, 250, 300] >>> era5 = ERA5(time, variables, pressure_levels) >>> met = era5.open_metdataset()
>>> # Instantiate and run model >>> scaling = ConstantHumidityScaling(rhi_adj=0.98) >>> model = ISSR(met, humidity_scaling=scaling) >>> out1 = model.eval() >>> issr1 = out1["issr"] >>> issr1.proportion # Get proportion of values with ice supersaturation 0.114...
>>> # Run with a lower threshold >>> out2 = model.eval(rhi_threshold=0.95) >>> issr2 = out2["issr"] >>> issr2.proportion 0.146...
- default_params¶
alias of
ISSRParams
- downselect_met()¶
Downselect
metdomain to the max/min bounds ofsource.Override this method if special handling is needed in met down-selection.
sourcemust be defined before callingdownselect_met().This method copies and re-assigns
metusingmet.copy()to avoid side-effects.
- Raises:
ValueError – Raised if
sourceis not defined. Raised ifsourceis not aGeoVectorDataset.
- classmethod ecmwf_met_variables()¶
Return an ECMWF-specific list of required meteorology variables.
- Returns:
tuple[MetVariable]– List of ECMWF-specific variants of required variables
- eval(source=None, **params)¶
Evaluate ice super-saturated regions along flight trajectory or on meteorology grid.
Changed in version 0.27.0: Humidity scaling now handled automatically. This is controlled by model parameter
humidity_scaling.Changed in version 0.48.0: If the
sourceis aMetDataset, the returned object will also be aMetDataset. Previous the “issr”MetDataArraywas returned.- Parameters:
source (
GeoVectorDataset | Flight | MetDataset | None, optional) – Input GeoVectorDataset or Flight. If None, evaluates at themetgrid points.**params (
Any) – Overwrite model parameters before eval
- Returns:
GeoVectorDataset | Flight | MetDataset– Returns 1 in ISSR, 0 everywhere else. Returns np.nan if interpolating outside meteorology grid.- Raises:
NotImplementedError – Raises if input
sourceis not supported.
- classmethod generic_met_variables()¶
Return a model-agnostic list of required meteorology variables.
- Returns:
tuple[MetVariable]– List of model-agnostic variants of required variables
- get_data_param(other, key, default=<object object>, *, set_attr=True)¶
Get data from other source-compatible object with default set by model parameter key.
Retrieves data with the following hierarchy:
other.data[key]. Returnsnp.ndarray | xr.DataArray.other.attrs[key]params[key]default
In case 3., the value of
params[key]is attached toother.attrs[key]unlessset_attris set to False.- Parameters:
- Returns:
Any– Value(s) found for key inotherdata,otherattrs, or model params- Raises:
KeyError – Raises KeyError if key is not found in any location and
defaultis not provided.
- get_source_param(key, default=<object object>, *, set_attr=True)¶
Get source data with default set by parameter key.
Retrieves data with the following hierarchy:
source.data[key]. Returnsnp.ndarray | xr.DataArray.source.attrs[key]params[key]default
In case 3., the value of
params[key]is attached tosource.attrs[key]unlessset_attris set to False.- Parameters:
- Returns:
Any– Value(s) found for key in source data, source attrs, or model params- Raises:
KeyError – Raises KeyError if key is not found in any location and
defaultis not provided.
- classmethod gfs_met_variables()¶
Return a GFS-specific list of required meteorology variables.
- Returns:
tuple[MetVariable]– List of GFS-specific variants of required variables
- property hash¶
Generate a unique hash for model instance.
- Returns:
str– Unique hash for model instance (sha1)
- property interp_kwargs¶
Shortcut to create interpolation arguments from
params.The output of this is useful for passing to
interpolate_met().- Returns:
dict[str,Any]– Dictionary with keys”method”
”bounds_error”
”fill_value”
”localize”
”use_indices”
”q_method”
as determined by
params.
- long_name = 'Ice super-saturated regions'¶
- met¶
Meteorology data
- met_required = False¶
Require meteorology is not None on __init__()
- met_variables = (MetVariable(short_name='t', standard_name='air_temperature', long_name='Air Temperature', level_type='isobaricInhPa', ecmwf_id=130, grib1_id=11, grib2_id=(0, 0, 0), units='K', amip='ta', description='Air temperature is the bulk temperature of the air, not the surface (skin) temperature.'), MetVariable(short_name='q', standard_name='specific_humidity', long_name='Specific Humidity', level_type='isobaricInhPa', ecmwf_id=133, grib1_id=51, grib2_id=(0, 1, 0), units='kg kg**-1', amip='hus', description='Specific means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air.'))¶
Required meteorology pressure level variables. Each element in the list is a
MetVariableor atuple[MetVariable]. If element is atuple[MetVariable], the variable depends on the data source and the tuple must include entries for a model-agnostic variable, an ECMWF-specific variable, and a GFS-specific variable. Only one of the three variable in the tuple is required for model evaluation.
- name = 'issr'¶
- optional_met_variables¶
Optional meteorology variables
- params¶
Instantiated model parameters, in dictionary form
- processed_met_variables¶
Set of required parameters if processing already complete on
metinput.
- require_met()¶
Ensure that
metis a MetDataset.- Returns:
MetDataset– Returns reference tomet. This is helpful for type narrowingmetwhen meteorology is required.- Raises:
ValueError – Raises when
metis None.
- require_source_type(type_)¶
Ensure that
sourceistype_.- Returns:
_Source– Returns reference tosource. This is helpful for type narrowingsourceto specific type(s).- Raises:
ValueError – Raises when
sourceis not_type_.
- set_source(source=None)¶
Attach original or copy of input
sourcetosource.- Parameters:
source (
MetDataset | GeoVectorDataset | Flight | Iterable[Flight] | None) – Parametersourcepassed ineval(). If None, an empty MetDataset with coordinates likemetis set tosource.
See also
- set_source_met(optional=False, variable=None)¶
Ensure or interpolate each required
met_variablesonsource.For each variable in
met_variables, checksourcefor data variable with the same name.For
GeoVectorDatasetsources, try to interpolatemetif variable does not exist.For
MetDatasetsources, try to get data frommetif variable does not exist.- Parameters:
optional (
bool, optional) – Includeoptional_met_variablesvariable (
MetVariable | Sequence[MetVariable] | None, optional) – MetVariable to set, frommet_variables. If None, set all variables inmet_variablesandoptional_met_variablesifoptionalis True.
- Raises:
ValueError – Variable does not exist and
sourceis a MetDataset.
- source¶
Data evaluated in model
- class pycontrails.models.issr.ISSRParams(copy_source=True, interpolation_method='linear', interpolation_bounds_error=False, interpolation_fill_value=nan, interpolation_localize=False, interpolation_use_indices=False, interpolation_q_method=None, verify_met=True, downselect_met=True, met_longitude_buffer=(0.0, 0.0), met_latitude_buffer=(0.0, 0.0), met_level_buffer=(0.0, 0.0), met_time_buffer=(np.timedelta64(0, 'h'), np.timedelta64(0, 'h')), rhi_threshold=1.0, humidity_scaling=None)¶
Bases:
ModelParamsDefault ISSR model parameters.
- as_dict()¶
Convert object to dictionary.
We use this method instead of dataclasses.asdict to use a shallow/unrecursive copy. This will return values as Any instead of dict.
- Returns:
dict[str,Any]– Dictionary version of self.
- copy_source = True¶
Copy input
sourcedata on eval
- downselect_met = True¶
Downselect input
MetDataset`to region aroundsource.
- humidity_scaling = None¶
Humidity scaling
- interpolation_bounds_error = False¶
If True, points lying outside interpolation will raise an error
- interpolation_fill_value = nan¶
Used for outside interpolation value if
interpolation_bounds_erroris False
- interpolation_localize = False¶
Experimental. See
pycontrails.core.interpolation.
- interpolation_method = 'linear'¶
Interpolation method. Supported methods include “linear”, “nearest”, “slinear”, “cubic”, and “quintic”. See
scipy.interpolate.RegularGridInterpolatorfor the description of each method. Not all methods are supported by all met grids. For example, the “cubic” method requires at least 4 points per dimension.
- interpolation_q_method = None¶
Experimental. Alternative interpolation method to account for specific humidity lapse rate bias. Must be one of
None,"cubic-spline", or"log-q-log-p". IfNone, no special interpolation is used for specific humidity. The"cubic-spline"method applies a custom stretching of the met interpolation table to account for the specific humidity lapse rate bias. The"log-q-log-p"method interpolates in the log of specific humidity and pressure, then converts back to specific humidity. Only used by models calling tointerpolate_met().
- interpolation_use_indices = False¶
Experimental. See
pycontrails.core.interpolation.
- met_latitude_buffer = (0.0, 0.0)¶
Met latitude buffer for input to
Flight.downselect_met(), in WGS84 coordinates. Only applies whendownselect_metis True.
- met_level_buffer = (0.0, 0.0)¶
Met level buffer for input to
Flight.downselect_met(), in [\(hPa\)]. Only applies whendownselect_metis True.
- met_longitude_buffer = (0.0, 0.0)¶
Met longitude buffer for input to
Flight.downselect_met(), in WGS84 coordinates. Only applies whendownselect_metis True.
- met_time_buffer = (np.timedelta64(0,'h'), np.timedelta64(0,'h'))¶
Met time buffer for input to
Flight.downselect_met()Only applies whendownselect_metis True.
- rhi_threshold = 1.0¶
RHI Threshold
- verify_met = True¶
Call
_verify_met()on model instantiation.
- pycontrails.models.issr.issr(air_temperature, specific_humidity=None, air_pressure=None, rhi=None, rhi_threshold=1.0)¶
Calculate ice super-saturated regions.
Regions where the atmospheric relative humidity over ice is greater than 1.
Parameters
air_temperature,specific_humidity,air_pressure, andrhimust have compatible shapes when defined.Either
specific_humidityandair_pressuremust both be provided, orrhimust be provided.- Parameters:
air_temperature (
ArrayLike) – A sequence or array of temperature values, \([K]\).specific_humidity (
ArrayLike | None) – A sequence or array of specific humidity values, [\(kg_{H_{2}O} \ kg_{moist air}\)] None by default.air_pressure (
ArrayLike | None) – A sequence or array of atmospheric pressure values, [\(Pa\)]. None by default.rhi (
ArrayLike | None, optional) – A sequence of array of RHi values, if already known. If not provided, this function will compute RHi from air_temperature, specific_humidity, and air_pressure. None by default.rhi_threshold (
float, optional) – Relative humidity over ice threshold for determining ISSR state
- Returns:
ArrayLike– ISSR state of each point indexed by the parameters.