pycontrails.models.issr¶
Ice super-saturated regions (ISSR).
Functions
|
Calculate ice super-saturated regions. |
Classes
|
Ice super-saturated regions over a |
|
Default ISSR model parameters. |
- class pycontrails.models.issr.ISSR(met=None, params=None, **params_kwargs)¶
Bases:
Model
Ice super-saturated regions over a
Flight
trajectory orMetDataset
grid.This model calculates points where the relative humidity over ice is greater than 1.
- Parameters:
met (
MetDataset
) – Dataset containing “air_temperature” and “specific_humidity” variables
Examples
>>> from datetime import datetime >>> from pycontrails.datalib.ecmwf import ERA5 >>> from pycontrails.models.issr import ISSR >>> from pycontrails.models.humidity_scaling import ConstantHumidityScaling
>>> # Get met data >>> time = datetime(2022, 3, 1, 0), datetime(2022, 3, 1, 2) >>> variables = ["air_temperature", "specific_humidity"] >>> pressure_levels = [200, 250, 300] >>> era5 = ERA5(time, variables, pressure_levels) >>> met = era5.open_metdataset()
>>> # Instantiate and run model >>> scaling = ConstantHumidityScaling(rhi_adj=0.98) >>> model = ISSR(met, humidity_scaling=scaling) >>> out1 = model.eval() >>> issr1 = out1["issr"] >>> issr1.proportion # Get proportion of values with ice supersaturation 0.114...
>>> # Run with a lower threshold >>> out2 = model.eval(rhi_threshold=0.95) >>> issr2 = out2["issr"] >>> issr2.proportion 0.146...
- default_params¶
alias of
ISSRParams
- downselect_met()¶
Downselect
met
domain to the max/min bounds ofsource
.Override this method if special handling is needed in met down-selection.
source
must be defined before callingdownselect_met()
.This method copies and re-assigns
met
usingmet.copy()
to avoid side-effects.
- Raises:
ValueError – Raised if
source
is not defined. Raised ifsource
is not aGeoVectorDataset
.
- eval(source=None, **params)¶
Evaluate ice super-saturated regions along flight trajectory or on meteorology grid.
Changed in version 0.27.0: Humidity scaling now handled automatically. This is controlled by model parameter
humidity_scaling
.Changed in version 0.48.0: If the
source
is aMetDataset
, the returned object will also be aMetDataset
. Previous the “issr”MetDataArray
was returned.- Parameters:
source (
GeoVectorDataset | Flight | MetDataset | None
, optional) – Input GeoVectorDataset or Flight. If None, evaluates at themet
grid points.**params (
Any
) – Overwrite model parameters before eval
- Returns:
GeoVectorDataset | Flight | MetDataset
– Returns 1 in ISSR, 0 everywhere else. Returns np.nan if interpolating outside meteorology grid.- Raises:
NotImplementedError – Raises if input
source
is not supported.
- get_source_param(key, default=<object object>, *, set_attr=True)¶
Get source data with default set by parameter key.
Retrieves data with the following hierarchy:
source.data[key]
. Returnsnp.ndarray | xr.DataArray
.source.attrs[key]
params[key]
default
In case 3., the value of
params[key]
is attached tosource.attrs[key]
.- Parameters:
- Returns:
Any
– Value(s) found for key in source data, source attrs, or model params- Raises:
KeyError – Raises KeyError if key is not found in any location and
default
is not provided.
See also
-
- property hash¶
Generate a unique hash for model instance.
- Returns:
str
– Unique hash for model instance (sha1)
- property interp_kwargs¶
Shortcut to create interpolation arguments from
params
.The output of this is useful for passing to
interpolate_met()
.- Returns:
dict[str
,Any]
– Dictionary with keys”method”
”bounds_error”
”fill_value”
”localize”
”use_indices”
”q_method”
as determined by
params
.
- long_name = 'Ice super-saturated regions'¶
- met¶
Meteorology data
- met_required = False¶
Require meteorology is not None on __init__()
- met_variables = (MetVariable(short_name='t', standard_name='air_temperature', long_name='Air Temperature', level_type='isobaricInhPa', ecmwf_id=130, grib1_id=11, grib2_id=(0, 0, 0), units='K', amip='ta', description='Air temperature is the bulk temperature of the air, not the surface (skin) temperature.'), MetVariable(short_name='q', standard_name='specific_humidity', long_name='Specific Humidity', level_type='isobaricInhPa', ecmwf_id=133, grib1_id=51, grib2_id=(0, 1, 0), units='kg kg**-1', amip='hus', description='Specific means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air.'))¶
Required meteorology pressure level variables. Each element in the list is a
MetVariable
or atuple[MetVariable]
. If element is atuple[MetVariable]
, the variable depends on the data source. Only one variable in the tuple is required.
- name = 'issr'¶
- optional_met_variables¶
Optional meteorology variables
- params¶
Instantiated model parameters, in dictionary form
- processed_met_variables¶
Set of required parameters if processing already complete on
met
input.
- require_met()¶
Ensure that
met
is a MetDataset.- Returns:
MetDataset
– Returns reference tomet
. This is helpful for type narrowingmet
when meteorology is required.- Raises:
ValueError – Raises when
met
is None.
- require_source_type(type_)¶
Ensure that
source
istype_
.- Returns:
_Source
– Returns reference tosource
. This is helpful for type narrowingsource
to specific type(s).- Raises:
ValueError – Raises when
source
is not_type_
.
- set_source(source=None)¶
Attach original or copy of input
source
tosource
.- Parameters:
source (
MetDataset | GeoVectorDataset | Flight | Iterable[Flight] | None
) – Parametersource
passed ineval()
. If None, an empty MetDataset with coordinates likemet
is set tosource
.
See also
-
meth:eval
- set_source_met(optional=False, variable=None)¶
Ensure or interpolate each required
met_variables
onsource
.For each variable in
met_variables
, checksource
for data variable with the same name.For
GeoVectorDataset
sources, try to interpolatemet
if variable does not exist.For
MetDataset
sources, try to get data frommet
if variable does not exist.- Parameters:
optional (
bool
, optional) – Includeoptional_met_variables
variable (
MetVariable | Sequence[MetVariable] | None
, optional) – MetVariable to set, frommet_variables
. If None, set all variables inmet_variables
andoptional_met_variables
ifoptional
is True.
- Raises:
ValueError – Variable does not exist and
source
is a MetDataset.
- source¶
Data evaluated in model
- class pycontrails.models.issr.ISSRParams(copy_source=True, interpolation_method='linear', interpolation_bounds_error=False, interpolation_fill_value=nan, interpolation_localize=False, interpolation_use_indices=False, interpolation_q_method=None, verify_met=True, downselect_met=True, met_longitude_buffer=(0.0, 0.0), met_latitude_buffer=(0.0, 0.0), met_level_buffer=(0.0, 0.0), met_time_buffer=(np.timedelta64(0, 'h'), np.timedelta64(0, 'h')), rhi_threshold=1.0, humidity_scaling=None)¶
Bases:
ModelParams
Default ISSR model parameters.
- as_dict()¶
Convert object to dictionary.
We use this method instead of dataclasses.asdict to use a shallow/unrecursive copy. This will return values as Any instead of dict.
- Returns:
dict[str
,Any]
– Dictionary version of self.
- copy_source = True¶
Copy input
source
data on eval
- downselect_met = True¶
Downselect input
MetDataset`
to region aroundsource
.
- humidity_scaling = None¶
Humidity scaling
- interpolation_bounds_error = False¶
If True, points lying outside interpolation will raise an error
- interpolation_fill_value = nan¶
Used for outside interpolation value if
interpolation_bounds_error
is False
- interpolation_localize = False¶
Experimental. See
pycontrails.core.interpolation
.
- interpolation_method = 'linear'¶
Interpolation method. Supported methods include “linear”, “nearest”, “slinear”, “cubic”, and “quintic”. See
scipy.interpolate.RegularGridInterpolator
for the description of each method. Not all methods are supported by all met grids. For example, the “cubic” method requires at least 4 points per dimension.
- interpolation_q_method = None¶
Experimental. Alternative interpolation method to account for specific humidity lapse rate bias. Must be one of
None
,"cubic-spline"
, or"log-q-log-p"
. IfNone
, no special interpolation is used for specific humidity. The"cubic-spline"
method applies a custom stretching of the met interpolation table to account for the specific humidity lapse rate bias. The"log-q-log-p"
method interpolates in the log of specific humidity and pressure, then converts back to specific humidity. Only used by models calling tointerpolate_met()
.
- interpolation_use_indices = False¶
Experimental. See
pycontrails.core.interpolation
.
- met_latitude_buffer = (0.0, 0.0)¶
Met latitude buffer for input to
Flight.downselect_met()
, in WGS84 coordinates. Only applies whendownselect_met
is True.
- met_level_buffer = (0.0, 0.0)¶
Met level buffer for input to
Flight.downselect_met()
, in [\(hPa\)]. Only applies whendownselect_met
is True.
- met_longitude_buffer = (0.0, 0.0)¶
Met longitude buffer for input to
Flight.downselect_met()
, in WGS84 coordinates. Only applies whendownselect_met
is True.
- met_time_buffer = (np.timedelta64(0,'h'), np.timedelta64(0,'h'))¶
Met time buffer for input to
Flight.downselect_met()
Only applies whendownselect_met
is True.
- rhi_threshold = 1.0¶
RHI Threshold
- verify_met = True¶
Call
_verify_met()
on model instantiation.
- pycontrails.models.issr.issr(air_temperature, specific_humidity=None, air_pressure=None, rhi=None, rhi_threshold=1.0)¶
Calculate ice super-saturated regions.
Regions where the atmospheric relative humidity over ice is greater than 1.
Parameters
air_temperature
,specific_humidity
,air_pressure
, andrhi
must have compatible shapes when defined.Either
specific_humidity
andair_pressure
must both be provided, orrhi
must be provided.- Parameters:
air_temperature (
ArrayLike
) – A sequence or array of temperature values, \([K]\).specific_humidity (
ArrayLike | None
) – A sequence or array of specific humidity values, [\(kg_{H_{2}O} \ kg_{moist air}\)] None by default.air_pressure (
ArrayLike | None
) – A sequence or array of atmospheric pressure values, [\(Pa\)]. None by default.rhi (
ArrayLike | None
, optional) – A sequence of array of RHi values, if already known. If not provided, this function will compute RHi from air_temperature, specific_humidity, and air_pressure. None by default.rhi_threshold (
float
, optional) – Relative humidity over ice threshold for determining ISSR state
- Returns:
ArrayLike
– ISSR state of each point indexed by the parameters.