pycontrails.core.interpolation¶
Interpolation utilities.
Functions
|
Interpolate over a grid with |
Classes
|
Support for interpolating a profile on a linear or logarithmic scale. |
|
Support for performant interpolation over a regular grid. |
|
An interface to intermediate RGI interpolation artifacts. |
- class pycontrails.core.interpolation.EmissionsProfileInterpolator(xp, fp, drop_duplicates=True)¶
Bases:
object
Support for interpolating a profile on a linear or logarithmic scale.
This class simply wraps
numpy.interp()
with fixed values for thexp
andfp
arguments. Unlikexarray.DataArray
interpolation, the numpy.interp automatically clips values outside the range of thexp
array.- Parameters:
xp (
npt.NDArray[np.floating]
) – Array of x-values. These must be strictly increasing and free from any nan values. Passed tonumpy.interp()
.fp (
npt.NDArray[np.floating]
) – Array of y-values. Passed tonumpy.interp()
.drop_duplicates (
bool
, optional) – Whether to drop duplicate values inxp
. Defaults toTrue
.
Examples
>>> xp = np.array([3, 7, 10, 30], dtype=float) >>> fp = np.array([0.1, 0.2, 0.3, 0.4], dtype=float) >>> epi = EmissionsProfileInterpolator(xp, fp) >>> # Interpolate a single value >>> epi.interp(5) np.float64(0.150000...)
>>> # Interpolate a single value on a logarithmic scale >>> epi.log_interp(5) np.float64(1.105171...)
>>> # Demonstrate speed up compared with xarray.DataArray interpolation >>> import time, xarray as xr >>> da = xr.DataArray(fp, dims=["x"], coords={"x": xp})
>>> inputs = [np.random.uniform(0, 31, size=200) for _ in range(1000)] >>> t0 = time.perf_counter() >>> xr_out = [da.interp(x=x.clip(3, 30)).values for x in inputs] >>> t1 = time.perf_counter() >>> np_out = [epi.interp(x) for x in inputs] >>> t2 = time.perf_counter() >>> assert np.allclose(xr_out, np_out)
>>> # We see a 100 fold speed up (more like 500x faster, but we don't >>> # want the test to fail!) >>> assert t2 - t1 < (t1 - t0) / 100
- interp(x)¶
Interpolate x against xp and fp.
- Parameters:
x (
npt.NDArray[np.floating]
) – Array of x-values to interpolate.- Returns:
npt.NDArray[np.floating]
– Array of interpolated y-values arising from the x-values. Thedtype
of the output array is the same as thedtype
ofx
.
- log_interp(x)¶
Interpolate x against xp and fp on a logarithmic scale.
- This method composes the following three functions.
numpy.log()
numpy.exp()
- Parameters:
x (
npt.NDArray[np.floating]
) – Array of x-values to interpolate.- Returns:
npt.NDArray[np.floating]
– Array of interpolated y-values arising from the x-values.
- class pycontrails.core.interpolation.PycontrailsRegularGridInterpolator(points, values, method, bounds_error, fill_value)¶
Bases:
RegularGridInterpolator
Support for performant interpolation over a regular grid.
This class is a thin wrapper around the
scipy.interpolate.RegularGridInterpolator
in order to make typicalpycontrails
use-cases more efficient.#. Avoid
RegularGridInterpolator
constructor validation. Ininterp()
, parameters are carefully crafted to fit into the intended form, thereby making validation unnecessary. #. Override the_evaluate_linear()
method with a faster implementation. See the_evaluate_linear()
docstring for more information.This class should not be used directly. Instead, use the
interp()
function.Changed in version 0.40.0: The
_evaluate_linear()
method now uses a Cython implementation. The dtype of the output is now consistent with the dtype of the underlyingvalues
- Parameters:
points (
tuple[npt.NDArray[np.floating]
,]
) – Coordinates of the grid points.values (
npt.NDArray[np.floating]
) – Grid values. The shape of this array must be compatible with the coordinates. An error is raised if the dtype is notnp.float32
ornp.float64
.method (
str
) – Passed intoscipy.interpolate.RegularGridInterpolator
bounds_error (
bool
) – Passed intoscipy.interpolate.RegularGridInterpolator
fill_value (
float | np.float64 | None
) – Passed intoscipy.interpolate.RegularGridInterpolator
- class pycontrails.core.interpolation.RGIArtifacts(xi_indices, norm_distances, out_of_bounds)¶
Bases:
object
An interface to intermediate RGI interpolation artifacts.
- norm_distances¶
- out_of_bounds¶
- xi_indices¶
- pycontrails.core.interpolation.interp(longitude, latitude, level, time, da, method, bounds_error, fill_value, localize, *, indices=None, return_indices=False)¶
Interpolate over a grid with
localize
option.Changed in version 0.25.6: Utilize scipy 1.9 upgrades to remove singleton dimensions.
Changed in version 0.26.0: Include
indices
andreturn_indices
experimental parameters. Currently, nan values inlongitude
,latitude
,level
, ortime
are always propagated through to the output, regardless ofbounds_error
. In other words, a ValueError for an out of bounds coordinate is only raised if a non-nan value is out of bounds.Changed in version 0.40.0: When
return_indices
is True, an instance ofRGIArtifacts
is used to store the indices artifacts.- Parameters:
longitude, latitude, level, time (
numpy.ndarray
) – Coordinates of points to be interpolated. These parameters have the same meaning asx
in analogy withnumpy.interp()
. All four of these arrays must be 1 dimensional of the same size.da (
xarray.DataArray
) – Gridded data interpolated over. Must adhere toMetDataArray
conventions. In particular, the dimensions ofda
must belongitude
,latitude
,level
, andtime
. The three spatial dimensions must be monotonically increasing withfloat64
dtype. Thetime
dimension must be monotonically increasing withdatetime64
dtype. Assumed to be cheap to load into memory (xr.DataArray.values
is used without hesitation).method (
str
) – Passed intoscipy.interpolate.RegularGridInterpolator
.bounds_error (
bool
) – Passed intoscipy.interpolate.RegularGridInterpolator
.fill_value (
float | np.float64 | None
) – Passed intoscipy.interpolate.RegularGridInterpolator
.localize (
bool
) – If True, clipda
to the smallest bounding box that contains all ofcoords
.indices (
tuple | None
, optional) – Experimental. Provide intermediate artifacts computed by :meth:scipy.interpolate.RegularGridInterpolator._find_indices` to avoid redundant computation. If known and provided, this can speed up interpolation by avoiding an unnecessary call to ``_find_indices
. By default, None. Must be used precisely.return_indices (
bool
, optional) – If True, return output ofscipy.interpolate.RegularGridInterpolator._find_indices()
in addition to interpolated values.
- Returns:
npt.NDArray[np.floating] | tuple[npt.NDArray[np.floating]
,RGIArtifacts]
– Interpolated values with same size aslongitude
. Ifreturn_indices
is True, return intermediate indices artifacts as well.
See also
-
meth:MetDataArray.interpolate
-
func:scipy.interpolate.interpn
-
class:scipy.interpolate.RegularGridInterpolator