pycontrails.ext.bada.BADAFlight¶
- class pycontrails.ext.bada.BADAFlight(met=None, params=None, **params_kwargs)¶
Bases:
AircraftPerformanceCompute aircraft properties and fuel consumption.
- Parameters:
met (
MetDataset | None, optional) – Dataset containing “air_temperature”, “eastward_wind”, and “northward_wind” variables. Only used if these variables are not already found on parametersourceineval(). By default None.params (
dict[str,Any], optional) – Override model parameters with dictionary. SeeBADAFlightParamsfor model parameters.**params_kwargs – Override model parameters with keyword arguments. See
BADAFlightParamsfor model parameters.
See also
-meth:eval
-class:BADAFlightParams
- __init__(met=None, params=None, **params_kwargs)¶
Methods
__init__([met, params])calculate_aircraft_performance(*, ...)Calculate aircraft performance along a trajectory.
Return an ECMWF-specific list of required meteorology variables.
Add
air_temperaturefield tosourcedata if not already present.Add
true_airspeedfield tosourcedata if not already present.eval([source])Evaluate the aircraft performance model.
eval_flight(fl)Extract aircraft properties and calculate the fuel consumption.
Return a model-agnostic list of required meteorology variables.
get_bada(aircraft_type)Check BADA databases for
aircraft_type.get_data_param(other, key[, default, set_attr])Get data from other source-compatible object with default set by model parameter key.
get_source_param(key[, default, set_attr])Get source data with default set by parameter key.
Return a GFS-specific list of required meteorology variables.
Ensure that
metis a MetDataset.require_source_type(type_)Ensure that
sourceistype_.set_source([source])Attach original or copy of input
sourcetosource.set_source_met([optional, variable])Ensure or interpolate each required
met_variablesonsource.simulate_fuel_and_performance(*, ...)Calculate aircraft mass, fuel mass flow rate, and overall propulsion efficiency.
transfer_met_source_attrs([source])Transfer met source metadata from
mettosource.update_params([params])Update model parameters on
params.Attributes
Meteorology data
Instantiated model parameters, in dictionary form
Data evaluated in model
Generate a unique hash for model instance.
Shortcut to create interpolation arguments from
params.Require meteorology is not None on __init__()
Required meteorology pressure level variables.
Optional meteorology variables
Set of required parameters if processing already complete on
metinput.- calculate_aircraft_performance(*, aircraft_type, altitude_ft, air_temperature, time, true_airspeed, aircraft_mass, engine_efficiency, fuel_flow, thrust, q_fuel, **kwargs)¶
Calculate aircraft performance along a trajectory.
When
timeis not None, this method should be used for a single flight trajectory. Waypoints are coupled via thetimeparameter.This method computes the rate of climb and descent (ROCD) to determine flight phases: “cruise”, “climb”, and “descent”. Performance metrics depend on this phase.
When
timeis None, this method can be used to simulate flight performance over an arbitrary sequence of flight waypoints by assuming nominal flight characteristics. In this case, each point is treated independently and all points are assumed to be in a “cruise” phase of the flight.- Parameters:
aircraft_type (
str) – Used to query the underlying model database for aircraft engine parameters.altitude_ft (
npt.NDArray[np.floating]) – Altitude at each waypoint, [\(ft\)]air_temperature (
npt.NDArray[np.floating]) – Ambient temperature for each waypoint, [\(K\)]time (
npt.NDArray[np.datetime64] | None) – Waypoint time innp.datetime64format. If None, only drag force will is used in thrust calculations (ie, no vertical change and constant horizontal change). In addition, aircraft is assumed to be in cruise.true_airspeed (
npt.NDArray[np.floating] | float | None) – True airspeed for each waypoint, [\(m s^{-1}\)]. If None, a nominal value is used.aircraft_mass (
npt.NDArray[np.floating] | float) – Aircraft mass for each waypoint, [\(kg\)].engine_efficiency (
npt.NDArray[np.floating] | float | None) – Override the engine efficiency at each waypoint.fuel_flow (
npt.NDArray[np.floating] | float | None) – Override the fuel flow at each waypoint, [\(kg s^{-1}\)].thrust (
npt.NDArray[np.floating] | float | None) – Override the thrust setting at each waypoint, [:math: N].q_fuel (
float) – Lower calorific value (LCV) of fuel, [\(J \ kg_{fuel}^{-1}\)].**kwargs (
Any) – Additional keyword arguments to pass to the model.
- Returns:
AircraftPerformanceData– Derived performance metrics at each waypoint.
- default_params¶
alias of
BADAFlightParams
- downselect_met()¶
Downselect
metdomain to the max/min bounds ofsource.Override this method if special handling is needed in met down-selection.
sourcemust be defined before callingdownselect_met().This method copies and re-assigns
metusingmet.copy()to avoid side-effects.
- Raises:
ValueError – Raised if
sourceis not defined. Raised ifsourceis not aGeoVectorDataset.
- classmethod ecmwf_met_variables()¶
Return an ECMWF-specific list of required meteorology variables.
- Returns:
tuple[MetVariable]– List of ECMWF-specific variants of required variables
- ensure_air_temperature_on_source()¶
Add
air_temperaturefield tosourcedata if not already present.This function operates in-place. If
air_temperatureis not already present onsource, it is calculated by interpolation from met data.
- ensure_true_airspeed_on_source()¶
Add
true_airspeedfield tosourcedata if not already present.This function operates in-place. If
true_airspeedis not already present onsource, it is calculated usingFlight.segment_true_airspeed().
- eval(source=None, **params)¶
Evaluate the aircraft performance model.
- eval_flight(fl)¶
Extract aircraft properties and calculate the fuel consumption.
Input
sourcemust contain a validaircraft_typein itssource.attrs["aircraft_type"].If
metdata is not passed into instance constructor, parametersourcemust contain the following data variables. - true_airspeed - air_temperatureIf the following variables are not provided in the flight attribute, the default aircraft-engine assignment and aircraft mass properties from BADA will be assumed: - engine_uid - max_takeoff_weight - operating_empty_weight - max_payload
If ‘load_factor’ (ranging between 0 and 1) is not provided in the flight attribute, the aircraft mass at the first waypoint will be set to the reference mass for the specific aircraft type from the BADA database.
- This method extracts the following aircraft properties from the BADA database.
aircraft_type_bada
wingspan
max_mach
max_altitude
engine_name
n_engine
- From these BADA derived quantities, each of the following is computed.
fuel_flow: fuel mass flow rate, [\(kg s^{-1}\)]
fuel_burn: total fuel burn between two waypoints, [\(kg\)]
aircraft_mass
engine_efficiency
thrust
- classmethod generic_met_variables()¶
Return a model-agnostic list of required meteorology variables.
- Returns:
tuple[MetVariable]– List of model-agnostic variants of required variables
- get_bada(aircraft_type)¶
Check BADA databases for
aircraft_type.- Parameters:
aircraft_type (
str) – Aircraft type to check for.- Returns:
BADA– BADA database object.
- get_data_param(other, key, default=<object object>, *, set_attr=True)¶
Get data from other source-compatible object with default set by model parameter key.
Retrieves data with the following hierarchy:
other.data[key]. Returnsnp.ndarray | xr.DataArray.other.attrs[key]params[key]default
In case 3., the value of
params[key]is attached toother.attrs[key]unlessset_attris set to False.- Parameters:
- Returns:
Any– Value(s) found for key inotherdata,otherattrs, or model params- Raises:
KeyError – Raises KeyError if key is not found in any location and
defaultis not provided.
- get_source_param(key, default=<object object>, *, set_attr=True)¶
Get source data with default set by parameter key.
Retrieves data with the following hierarchy:
source.data[key]. Returnsnp.ndarray | xr.DataArray.source.attrs[key]params[key]default
In case 3., the value of
params[key]is attached tosource.attrs[key]unlessset_attris set to False.- Parameters:
- Returns:
Any– Value(s) found for key in source data, source attrs, or model params- Raises:
KeyError – Raises KeyError if key is not found in any location and
defaultis not provided.
- classmethod gfs_met_variables()¶
Return a GFS-specific list of required meteorology variables.
- Returns:
tuple[MetVariable]– List of GFS-specific variants of required variables
- property hash¶
Generate a unique hash for model instance.
- Returns:
str– Unique hash for model instance (sha1)
- property interp_kwargs¶
Shortcut to create interpolation arguments from
params.The output of this is useful for passing to
interpolate_met().- Returns:
dict[str,Any]– Dictionary with keys”method”
”bounds_error”
”fill_value”
”localize”
”use_indices”
”q_method”
as determined by
params.
- long_name = 'Base of aircraft data flight model'¶
- met¶
Meteorology data
- met_required = False¶
Require meteorology is not None on __init__()
- met_variables = ()¶
Required meteorology pressure level variables. Each element in the list is a
MetVariableor atuple[MetVariable]. If element is atuple[MetVariable], the variable depends on the data source and the tuple must include entries for a model-agnostic variable, an ECMWF-specific variable, and a GFS-specific variable. Only one of the three variable in the tuple is required for model evaluation.
- name = 'bada'¶
- optional_met_variables = (MetVariable(short_name='t', standard_name='air_temperature', long_name='Air Temperature', level_type='isobaricInhPa', ecmwf_id=130, grib1_id=11, grib2_id=(0, 0, 0), units='K', amip='ta', description='Air temperature is the bulk temperature of the air, not the surface (skin) temperature.'), MetVariable(short_name='u', standard_name='eastward_wind', long_name='Eastward Wind', level_type='isobaricInhPa', ecmwf_id=131, grib1_id=33, grib2_id=(0, 2, 2), units='m s**-1', amip='ua', description='"Eastward" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component.'), MetVariable(short_name='v', standard_name='northward_wind', long_name='Northward Wind', level_type='isobaricInhPa', ecmwf_id=132, grib1_id=34, grib2_id=(0, 2, 3), units='m s**-1', amip='va', description='"Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component.'))¶
Optional meteorology variables
- params¶
Instantiated model parameters, in dictionary form
- processed_met_variables¶
Set of required parameters if processing already complete on
metinput.
- require_met()¶
Ensure that
metis a MetDataset.- Returns:
MetDataset– Returns reference tomet. This is helpful for type narrowingmetwhen meteorology is required.- Raises:
ValueError – Raises when
metis None.
- require_source_type(type_)¶
Ensure that
sourceistype_.- Returns:
_Source– Returns reference tosource. This is helpful for type narrowingsourceto specific type(s).- Raises:
ValueError – Raises when
sourceis not_type_.
- set_source(source=None)¶
Attach original or copy of input
sourcetosource.- Parameters:
source (
MetDataset | GeoVectorDataset | Flight | Iterable[Flight] | None) – Parametersourcepassed ineval(). If None, an empty MetDataset with coordinates likemetis set tosource.
See also
- set_source_met(optional=False, variable=None)¶
Ensure or interpolate each required
met_variablesonsource.For each variable in
met_variables, checksourcefor data variable with the same name.For
GeoVectorDatasetsources, try to interpolatemetif variable does not exist.For
MetDatasetsources, try to get data frommetif variable does not exist.- Parameters:
optional (
bool, optional) – Includeoptional_met_variablesvariable (
MetVariable | Sequence[MetVariable] | None, optional) – MetVariable to set, frommet_variables. If None, set all variables inmet_variablesandoptional_met_variablesifoptionalis True.
- Raises:
ValueError – Variable does not exist and
sourceis a MetDataset.
- simulate_fuel_and_performance(*, aircraft_type, altitude_ft, time, true_airspeed, air_temperature, aircraft_mass, thrust, engine_efficiency, fuel_flow, q_fuel, n_iter, amass_oew, amass_mtow, amass_mpl, load_factor, takeoff_mass, **kwargs)¶
Calculate aircraft mass, fuel mass flow rate, and overall propulsion efficiency.
This method performs
n_iteriterations, each of which callscalculate_aircraft_performance(). Each successive iteration generates a better estimate for mass fuel flow rate and aircraft mass at each waypoint.- Parameters:
aircraft_type (
str) – Aircraft type designator used to query the underlying model database.altitude_ft (
npt.NDArray[np.floating]) – Altitude at each waypoint, [\(ft\)]time (
npt.NDArray[np.datetime64]) – Waypoint time innp.datetime64format.true_airspeed (
npt.NDArray[np.floating]) – True airspeed for each waypoint, [\(m s^{-1}\)]air_temperature (
npt.NDArray[np.floating]) – Ambient temperature for each waypoint, [\(K\)]aircraft_mass (
npt.NDArray[np.floating] | float | None) – Override the aircraft_mass at each waypoint, [\(kg\)].thrust (
npt.NDArray[np.floating] | float | None) – Override the thrust setting at each waypoint, [:math: N].engine_efficiency (
npt.NDArray[np.floating] | float | None) – Override the engine efficiency at each waypoint.fuel_flow (
npt.NDArray[np.floating] | float | None) – Override the fuel flow at each waypoint, [\(kg s^{-1}\)].q_fuel (
float) – Lower calorific value (LCV) of fuel, [\(J \ kg_{fuel}^{-1}\)].amass_oew (
float) – Aircraft operating empty weight, [\(kg\)]. Used to determine the initial aircraft mass iftakeoff_massis not provided. This quantity is constant for a given aircraft type.amass_mtow (
float) – Aircraft maximum take-off weight, [\(kg\)]. Used to determine the initial aircraft mass iftakeoff_massis not provided. This quantity is constant for a given aircraft type.amass_mpl (
float) – Aircraft maximum payload, [\(kg\)]. Used to determine the initial aircraft mass iftakeoff_massis not provided. This quantity is constant for a given aircraft type.load_factor (
float) – Aircraft load factor assumption (between 0 and 1). If unknown, a value of 0.7 is a reasonable default. Typically, this parameter is between 0.6 and 0.8. During the height of the COVID-19 pandemic, this parameter was often much lower.takeoff_mass (
float | None, optional) – If known, the takeoff mass can be provided to skip the calculation injet.initial_aircraft_mass(). In this case, the parametersload_factor,amass_oew,amass_mtow, andamass_mplare ignored.**kwargs (
Any) – Additional keyword arguments are passed tocalculate_aircraft_performance().
- Returns:
AircraftPerformanceData– Results from the final iteration is returned.
- source¶
Data evaluated in model