Literature

Publications

Publications including pycontrails:

If you use pycontrails in your work, please cite using the Zenodo DOI:

DOI

References

References managed in public Zotero Library

[1]

A Celikel and F Jelinek. Forecasting civil aviation fuel burn and emissions in Europe. EUROCONTROL Experimental Centre, 2001.

[2]

D.S. Lee, D.W. Fahey, A. Skowron, M.R. Allen, U. Burkhardt, Q. Chen, S.J. Doherty, S. Freeman, P.M. Forster, J. Fuglestvedt, A. Gettelman, R.R. De León, L.L. Lim, M.T. Lund, R.J. Millar, B. Owen, J.E. Penner, G. Pitari, M.J. Prather, R. Sausen, and L.J. Wilcox. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244:117834, January 2021. doi:10.1016/j.atmosenv.2020.117834.

[3]

M. E. J. Stettler, S. Eastham, and S. R. H. Barrett. Air quality and public health impacts of UK airports. Part I: Emissions. Atmospheric Environment, 45(31):5415–5424, October 2011. doi:10.1016/j.atmosenv.2011.07.012.

[4]

J. T. Wilkerson, M. Z. Jacobson, A. Malwitz, S. Balasubramanian, R. Wayson, G. Fleming, A. D. Naiman, and S. K. Lele. Analysis of emission data from global commercial aviation: 2004 and 2006. Atmospheric Chemistry and Physics, 10(13):6391–6408, July 2010. doi:10.5194/acp-10-6391-2010.

[5]

Roger Teoh, Ulrich Schumann, Christiane Voigt, Tobias Schripp, Marc Shapiro, Zebediah Engberg, Jarlath Molloy, George Koudis, and Marc E. J. Stettler. Targeted Use of Sustainable Aviation Fuel to Maximize Climate Benefits. Environmental Science & Technology, November 2022. doi:10.1021/acs.est.2c05781.

[6]

Tobias Schripp, Bruce E. Anderson, Uwe Bauder, Bastian Rauch, Joel C. Corbin, Greg J. Smallwood, Prem Lobo, Ewan C. Crosbie, Michael A. Shook, Richard C. Miake-Lye, Zhenhong Yu, Andrew Freedman, Philip D. Whitefield, Claire E. Robinson, Steven L. Achterberg, Markus Köhler, Patrick Oßwald, Tobias Grein, Daniel Sauer, Christiane Voigt, Hans Schlager, and Patrick LeClercq. Aircraft engine particulate matter emissions from sustainable aviation fuels: Results from ground-based measurements during the NASA/DLR campaign ECLIF2/ND-MAX. Fuel, 325:124764, October 2022. doi:10.1016/j.fuel.2022.124764.

[7]

M. Anwar H. Khan, Joel Brierley, Kieran N. Tait, Steve Bullock, Dudley E. Shallcross, and Mark H. Lowenberg. The Emissions of Water Vapour and NOx from Modelled Hydrogen-Fuelled Aircraft and the Impact of NOx Reduction on Climate Compared with Kerosene-Fuelled Aircraft. Atmosphere, 13(10):1660, October 2022. doi:10.3390/atmos13101660.

[8]

Robert W. Carver and Alex Merose. ARCO-ERA5: An Analysis-Ready Cloud-Optimized Reanalysis Dataset. In 103rd AMS Annual Meeting. AMS, January 2023.

[9]

Luke Kulik. Satellite-Based Detection of Contrails Using Deep Learning. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, September 2019.

[10]

SEVIRI RGB Cal Module - part II. https://resources.eumetrain.org/data/4/410/navmenu.php?tab=5&page=2.0.0.

[11]

Ulrich Schumann. On conditions for contrail formation from aircraft exhausts (Über Bedingungen zur Bildung von Kondensstreifen aus Flugzeugabgasen). Meteorologische Zeitschrift, 5(1):4–23, March 1996. doi:10.1127/metz/5/1996/4.

[12]

Michael Ponater. Contrails in a comprehensive global climate model: Parameterization and radiative forcing results. Journal of Geophysical Research, 107(D13):4164, 2002. doi:10.1029/2001JD000429.

[13]

U. Schumann. A contrail cirrus prediction model. Geoscientific Model Development, 5(3):543–580, May 2012. doi:10.5194/gmd-5-543-2012.

[14]

U. Schumann, B. Mayer, K. Graf, and H. Mannstein. A Parametric Radiative Forcing Model for Contrail Cirrus. Journal of Applied Meteorology and Climatology, 51(7):1391–1406, July 2012. doi:10.1175/JAMC-D-11-0242.1.

[15]

Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler. Aviation contrail climate effects in the North Atlantic from 2016 to 2021. Atmospheric Chemistry and Physics, 22(16):10919–10935, August 2022. doi:10.5194/acp-22-10919-2022.

[16]

U. Schumann and P. Wendling. Determination of Contrails from Satellite Data and Observational Results. In U. Schumann, editor, Air Traffic and the Environment — Background, Tendencies and Potential Global Atmospheric Effects, Lecture Notes in Engineering, 138–153. Berlin, Heidelberg, 1990. Springer. doi:10.1007/978-3-642-51686-3_9.

[17]

Ulrich Schumann. A contrail cirrus prediction tool. In Robert Sausen, Peter F. J. van Velthoven, Claus Brüning, and Anja Blum, editors, Proceedings of the 2nd International Conference on Transport, Atmosphere and Climate (TAC-2), volume 2010–10, 69–74. Aachen, Germany and Maastricht, The Netherlands, 2010. DLR.

[18]

C. Voigt, U. Schumann, T. Jurkat, D. Schäuble, H. Schlager, A. Petzold, J.-F. Gayet, M. Krämer, J. Schneider, S. Borrmann, J. Schmale, P. Jessberger, T. Hamburger, M. Lichtenstern, M. Scheibe, C. Gourbeyre, J. Meyer, M. Kübbeler, W. Frey, H. Kalesse, T. Butler, M. G. Lawrence, F. Holzäpfel, F. Arnold, M. Wendisch, A. Döpelheuer, K. Gottschaldt, R. Baumann, M. Zöger, I. Sölch, M. Rautenhaus, and A. Dörnbrack. In-situ observations of young contrails – overview and selected results from the CONCERT campaign. Atmospheric Chemistry and Physics, 10(18):9039–9056, September 2010. doi:10.5194/acp-10-9039-2010.

[19]

Ulrich Schumann, Kaspar Graf, and Hermann Mannstein. Potential to reduce the climate impact of aviation by flight level changes. In 3rd AIAA Atmospheric Space Environments Conference. Honolulu, Hawaii, June 2011. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2011-3376.

[20]

Ulrich Schumann, Kaspar Graf, Hermann Mannstein, and Bernhard Mayer. Contrails: Visible Aviation Induced Climate Impact. In Ulrich Schumann, editor, Atmospheric Physics, pages 239–257. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-30183-4_15.

[21]

U. Schumann, B. Mayer, K. Gierens, S. Unterstrasser, P. Jessberger, A. Petzold, C. Voigt, and J.-F. Gayet. Effective Radius of Ice Particles in Cirrus and Contrails. Journal of the Atmospheric Sciences, 68(2):300–321, February 2011. doi:10.1175/2010JAS3562.1.

[22]

U. Schumann, J. E. Penner, Yibin Chen, Cheng Zhou, and K. Graf. Dehydration effects from contrails in a coupled contrail–climate model. Atmospheric Chemistry and Physics, 15(19):11179–11199, October 2015. doi:10.5194/acp-15-11179-2015.

[23]

Roger Teoh, Ulrich Schumann, Arnab Majumdar, and Marc E. J. Stettler. Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption. Environmental Science & Technology, 54(5):2941–2950, March 2020. doi:10.1021/acs.est.9b05608.

[24]

U. Schumann, L. Bugliaro, A. Dörnbrack, R. Baumann, and C. Voigt. Aviation Contrail Cirrus and Radiative Forcing Over Europe During 6 Months of COVID-19. Geophysical Research Letters, 48(8):e2021GL092771, 2021. doi:10.1029/2021GL092771.

[25]

Ulrich Schumann, Ian Poll, Roger Teoh, Rainer Koelle, Enrico Spinielli, Jarlath Molloy, George S. Koudis, Robert Baumann, Luca Bugliaro, Marc Stettler, and Christiane Voigt. Air traffic and contrail changes over Europe during COVID-19: a model study. Atmospheric Chemistry and Physics, 21(10):7429–7450, May 2021. doi:10.5194/acp-21-7429-2021.

[26]

Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke. Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53. Geoscientific Model Development, 16(11):3313–3334, June 2023. doi:10.5194/gmd-16-3313-2023.

[27]

Ulrich Schumann and Kaspar Graf. Aviation-induced cirrus and radiation changes at diurnal timescales. Journal of Geophysical Research: Atmospheres, 118(5):2404–2421, March 2013. doi:10.1002/jgrd.50184.

[28]

Simon Unterstrasser. Properties of young contrails – a parametrisation based on large-eddy simulations. Atmospheric Chemistry and Physics, 16(4):2059–2082, February 2016. doi:10.5194/acp-16-2059-2016.

[29]

Bernd Kärcher. Formation and radiative forcing of contrail cirrus. Nature Communications, December 2018. doi:10.1038/s41467-018-04068-0.

[30]

T. Bräuer, C. Voigt, D. Sauer, S. Kaufmann, V. Hahn, M. Scheibe, H. Schlager, G. S. Diskin, J. B. Nowak, J. P. DiGangi, F. Huber, R. H. Moore, and B. E. Anderson. Airborne Measurements of Contrail Ice Properties—Dependence on Temperature and Humidity. Geophysical Research Letters, April 2021. doi:10.1029/2020GL092166.

[31]

P. Spichtinger and K. M. Gierens. Modelling of cirrus clouds – Part 1a: Model description and validation. Atmospheric Chemistry and Physics, 9(2):685–706, January 2009. doi:10.5194/acp-9-685-2009.

[32]

Ulrich Schumann, Robert Baumann, Darrel Baumgardner, Sarah T. Bedka, David P. Duda, Volker Freudenthaler, Jean-Francois Gayet, Andrew J. Heymsfield, Patrick Minnis, Markus Quante, Ehrhard Raschke, Hans Schlager, Margarita Vázquez-Navarro, Christiane Voigt, and Zhien Wang. Properties of individual contrails: a compilation of observations and some comparisons. Atmospheric Chemistry and Physics, 17(1):403–438, January 2017. doi:10.5194/acp-17-403-2017.

[33]

Frank Holzäpfel. Probabilistic Two-Phase Wake Vortex Decay and Transport Model. Journal of Aircraft, 40(2):323–331, March 2003. doi:10.2514/2.3096.

[34]

U. Schumann and T. Gerz. Turbulent Mixing in Stably Stratified Shear Flows. Journal of Applied Meteorology and Climatology, 34(1):33–48, January 1995. doi:10.1175/1520-0450-34.1.33.

[35]

Simone Dietmüller. Dlr-pa/climaccf: Dataset update for GMDD. Zenodo, September 2022. doi:10.5281/zenodo.7074582.

[36]

Simone Dietmüller, Sigrun Matthes, Katrin Dahlmann, Hiroshi Yamashita, Abolfazl Simorgh, Manuel Soler, Florian Linke, Benjamin Lührs, Maximilian Mendiguchia Meuser, Christian Weder, Volker Grewe, Feijia Yin, and Federica Castino. A python library for computing individual and merged non-CO<sub>2</sub> algorithmic climate change functions: CLIMaCCF V1.0. Preprint, Atmospheric sciences, October 2022. doi:10.5194/gmd-2022-203.

[37]

D.I.A. Poll and U. Schumann. An estimation method for the fuel burn and other performance characteristics of civil transport aircraft in the cruise. Part 1 fundamental quantities and governing relations for a general atmosphere. The Aeronautical Journal, 125(1284):257–295, February 2021. doi:10.1017/aer.2020.62.

[38]

D.I.A. Poll and U. Schumann. An estimation method for the fuel burn and other performance characteristics of civil transport aircraft during cruise: part 2, determining the aircraft's characteristic parameters. The Aeronautical Journal, 125(1284):296–340, February 2021. doi:10.1017/aer.2020.124.

[39]

Marc E. J. Stettler, Adam M. Boies, Andreas Petzold, and Steven R. H. Barrett. Global Civil Aviation Black Carbon Emissions. Environmental Science & Technology, 47(18):10397–10404, September 2013. doi:10.1021/es401356v.

[40]

Joseph P. Abrahamson, Joseph Zelina, M. Gurhan Andac, and Randy L. Vander Wal. Predictive Model Development for Aviation Black Carbon Mass Emissions from Alternative and Conventional Fuels at Ground and Cruise. Environmental Science & Technology, 50(21):12048–12055, November 2016. doi:10.1021/acs.est.6b03749.

[41]

A Dopelheuer and M Lecht. Influence of engine performance on emission characteristics. Gas Turbine Engine Combustion, Emissions and Alternative Fuels, pages 12, 1998.

[42]

Roger Teoh, Marc E.J. Stettler, Arnab Majumdar, Ulrich Schumann, Brian Graves, and Adam M. Boies. A methodology to relate black carbon particle number and mass emissions. Journal of Aerosol Science, 132:44–59, June 2019. doi:10.1016/j.jaerosci.2019.03.006.

[43]

Kihong Park, David B. Kittelson, Michael R. Zachariah, and Peter H. McMurry. Measurement of Inherent Material Density of Nanoparticle Agglomerates. Journal of Nanoparticle Research, 6(2):267–272, June 2004. doi:10.1023/B:NANO.0000034657.71309.e6.

[44]

Ramin Dastanpour and Steven N. Rogak. Observations of a Correlation Between Primary Particle and Aggregate Size for Soot Particles. Aerosol Science and Technology, 48(10):1043–1049, October 2014. doi:10.1080/02786826.2014.955565.

[45]

Benjamin T. Brem, Lukas Durdina, Frithjof Siegerist, Peter Beyerle, Kevin Bruderer, Theo Rindlisbacher, Sara Rocci-Denis, M. Gurhan Andac, Joseph Zelina, Olivier Penanhoat, and Jing Wang. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine. Environmental Science & Technology, 49(22):13149–13157, November 2015. doi:10.1021/acs.est.5b04167.

[46]

Doug DuBois and Gerald C. Paynter. "Fuel Flow Method2" for Estimating Aircraft Emissions. SAE Transactions, 115:1–14, 2006. arXiv:44657657.

[47]

Zhian Sun and Lawrie Rikus. Parametrization of effective sizes of cirrus-cloud particles and its verification against observations: RADIATIVE FOR CING AND CLIMATE SENSITIVITY. Quarterly Journal of the Royal Meteorological Society, 125(560):3037–3055, October 1999. doi:10.1002/qj.49712556012.

[48]

Philipp Reutter, Patrick Neis, Susanne Rohs, and Bastien Sauvage. Ice supersaturated regions: properties and validation of ERA-Interim reanalysis with IAGOS in situ water vapour measurements. Atmospheric Chemistry and Physics, 20(2):787–804, January 2020. doi:10.5194/acp-20-787-2020.

[49]

F. Anthony Eckel and Michael K. Walters. Calibrated Probabilistic Quantitative Precipitation Forecasts Based on theMRF Ensemble. Weather and Forecasting, 13(4):1132–1147, December 1998. doi:10.1175/1520-0434(1998)013<1132:CPQPFB>2.0.CO;2.

[50]

Wikipedia contributors. International Standard Atmosphere. https://en.wikipedia.org/w/index.php?title=International_Standard_Atmosphere&oldid=1143858065#ICAO_Standard_Atmosphere, 2023.

[51]

UO Solar Radiation Monitoring Laboratory. UO SRML: Solar radiation basics. http://solardat.uoregon.edu/SolarRadiationBasics.html, 2022.

[52]

G. W. Paltridge, C. Martin R. Platt, and C. M. R. Platt. Radiative Processes in Meteorology and Climatology. Elsevier Scientific Publishing Company, 1976. ISBN 978-0-444-41444-1.

[53]

D. Sonntag. Advancements in the field of hygrometry. Meteorologische Zeitschrift, 3(2):51–66, May 1994. doi:10.1127/metz/3/1994/51.

[54]

Nicholas Cumpsty and Andrew Heyes. Jet Propulsion. Cambridge University Press, July 2015. ISBN 978-1-107-51122-4.

[55]

D. K. Wasiuk, M. H. Lowenberg, and D. E. Shallcross. An aircraft performance model implementation for the estimation of global and regional commercial aviation fuel burn and emissions. Transportation Research Part D: Transport and Environment, 35:142–159, March 2015. doi:10.1016/j.trd.2014.11.022.

[56]

Eurocontrol. USER MANUAL FOR THE BASE OF Aircraft DATA (BADA) REVISION 3.8. April 2010. doi:10.1163/1570-6664_iyb_SIM_org_39214.

[57]

Wikipedia contributors. Azimuth. https://en.wikipedia.org/w/index.php?title=Azimuth&oldid=1131548993, 2023.

[58]

Wikipedia contributors. Solar zenith angle. https://en.wikipedia.org/w/index.php?title=Solar_zenith_angle&oldid=1141660912, 2023.

[59]

Calculate distance and bearing between two Latitude/Longitude points using haversine formula in JavaScript. https://www.movable-type.co.uk/scripts/latlong.html.

[60]

NOAA. Solar Calculation Details. https://gml.noaa.gov/grad/solcalc/calcdetails.html.

[61]

John A. Duffie and William A. Beckman. Solar Engineering of Thermal Processes. Wiley, 1991. ISBN 978-0-471-51056-7.

[62]

Wikipedia contributors. Barometric formula. https://en.wikipedia.org/w/index.php?title=Barometric_formula&oldid=1144039200, 2023.

[63]

David Megginson. Open-data downloads for OurAirports. April 2023.

[64]

Rémi Chevallier, Marc Shapiro, Zebediah Engberg, Manuel Soler, and Daniel Delahaye. Linear Contrails Detection, Tracking and Matching with Aircraft Using Geostationary Satellite and Air Traffic Data. Aerospace, 10(7):578, July 2023. doi:10.3390/aerospace10070578.

[65]

Alejandra Martín Frías, \relax FLIGHTKEYS GmbH, and Manuel Soler. Enhancing environmental sustainability in aviation: an implementation of contrail mitigation strategies in commercial flight dispatching. In ATM Seminar. 2023.

[66]

Scott Geraedts, Erica Brand, Thomas R. Dean, Sebastian Eastham, Carl Elkin, Zebediah Engberg, Ulrike Hager, Ian Langmore, Kevin McCloskey, Joe Yue-Hei Ng, John C. Platt, Tharun Sankar, Aaron Sarna, Marc Shapiro, and Nita Goyal. A scalable system to measure contrail formation on a per-flight basis. August 2023. arXiv:2308.02707.