pycontrails.models.pcr¶
Persistent contrail regions (PCR = SAC & ISSR).
Equivalent to (SAC & ISSR)
Functions
|
Calculate regions of persistent contrail formation. |
Classes
|
Determine points with likely persistent contrails (PCR). |
|
Persistent Contrail Regions (PCR) parameters. |
- class pycontrails.models.pcr.PCR(met=None, params=None, **params_kwargs)¶
Bases:
Model
Determine points with likely persistent contrails (PCR).
Intersection of Ice Super Saturated Regions (ISSR) with regions in which the Schmidt-Appleman Criteria (SAC) is satisfied.
- Parameters:
met (
MetDataset
) – Dataset containing “air_temperature”, “specific_humidity” variablesparams (
dict[str
,Any]
, optional) – Override PCR model parameters with dictionary. SeePCRGridParams
for model parameters.**params_kwargs – Override PCR model parameters with keyword arguments. See
PCRGridParams
for model parameters.
- downselect_met()¶
Downselect
met
domain to the max/min bounds ofsource
.Override this method if special handling is needed in met down-selection.
source
must be defined before callingdownselect_met()
.This method copies and re-assigns
met
usingmet.copy()
to avoid side-effects.
- Raises:
ValueError – Raised if
source
is not defined. Raised ifsource
is not aGeoVectorDataset
.
- eval(source=None, **params)¶
Evaluate potential contrails regions of the
met
grid.- Parameters:
source (
GeoVectorDataset | Flight | MetDataset | None
, optional) – Input GeoVectorDataset or Flight. If None, evaluates at themet
grid points.**params (
Any
) – Overwrite model parameters.
- Returns:
GeoVectorDataset | Flight | MetDataset
– Returns 1 in potential contrail regions, 0 everywhere else. Returnsnp.nan
if interpolating outside meteorology grid.
- get_source_param(key, default=<object object>, *, set_attr=True)¶
Get source data with default set by parameter key.
Retrieves data with the following hierarchy:
source.data[key]
. Returnsnp.ndarray | xr.DataArray
.source.attrs[key]
params[key]
default
In case 3., the value of
params[key]
is attached tosource.attrs[key]
.- Parameters:
- Returns:
Any
– Value(s) found for key in source data, source attrs, or model params- Raises:
KeyError – Raises KeyError if key is not found in any location and
default
is not provided.
See also
-
- property hash¶
Generate a unique hash for model instance.
- Returns:
str
– Unique hash for model instance (sha1)
- property interp_kwargs¶
Shortcut to create interpolation arguments from
params
.The output of this is useful for passing to
interpolate_met()
.- Returns:
dict[str
,Any]
– Dictionary with keys”method”
”bounds_error”
”fill_value”
”localize”
”use_indices”
”q_method”
as determined by
params
.
- long_name = 'Persistent contrail regions'¶
- met¶
Meteorology data
- met_required = False¶
Require meteorology is not None on __init__()
- met_variables = (MetVariable(short_name='t', standard_name='air_temperature', long_name='Air Temperature', level_type='isobaricInhPa', ecmwf_id=130, grib1_id=11, grib2_id=(0, 0, 0), units='K', amip='ta', description='Air temperature is the bulk temperature of the air, not the surface (skin) temperature.'), MetVariable(short_name='q', standard_name='specific_humidity', long_name='Specific Humidity', level_type='isobaricInhPa', ecmwf_id=133, grib1_id=51, grib2_id=(0, 1, 0), units='kg kg**-1', amip='hus', description='Specific means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air.'))¶
Required meteorology pressure level variables. Each element in the list is a
MetVariable
or atuple[MetVariable]
. If element is atuple[MetVariable]
, the variable depends on the data source. Only one variable in the tuple is required.
- name = 'pcr'¶
- optional_met_variables¶
Optional meteorology variables
- params¶
Instantiated model parameters, in dictionary form
- processed_met_variables¶
Set of required parameters if processing already complete on
met
input.
- require_met()¶
Ensure that
met
is a MetDataset.- Returns:
MetDataset
– Returns reference tomet
. This is helpful for type narrowingmet
when meteorology is required.- Raises:
ValueError – Raises when
met
is None.
- require_source_type(type_)¶
Ensure that
source
istype_
.- Returns:
_Source
– Returns reference tosource
. This is helpful for type narrowingsource
to specific type(s).- Raises:
ValueError – Raises when
source
is not_type_
.
- set_source(source=None)¶
Attach original or copy of input
source
tosource
.- Parameters:
source (
MetDataset | GeoVectorDataset | Flight | Iterable[Flight] | None
) – Parametersource
passed ineval()
. If None, an empty MetDataset with coordinates likemet
is set tosource
.
See also
-
meth:eval
- set_source_met(optional=False, variable=None)¶
Ensure or interpolate each required
met_variables
onsource
.For each variable in
met_variables
, checksource
for data variable with the same name.For
GeoVectorDataset
sources, try to interpolatemet
if variable does not exist.For
MetDataset
sources, try to get data frommet
if variable does not exist.- Parameters:
optional (
bool
, optional) – Includeoptional_met_variables
variable (
MetVariable | Sequence[MetVariable] | None
, optional) – MetVariable to set, frommet_variables
. If None, set all variables inmet_variables
andoptional_met_variables
ifoptional
is True.
- Raises:
ValueError – Variable does not exist and
source
is a MetDataset.
- source¶
Data evaluated in model
- class pycontrails.models.pcr.PCRParams(copy_source=True, interpolation_method='linear', interpolation_bounds_error=False, interpolation_fill_value=nan, interpolation_localize=False, interpolation_use_indices=False, interpolation_q_method=None, verify_met=True, downselect_met=True, met_longitude_buffer=(0.0, 0.0), met_latitude_buffer=(0.0, 0.0), met_level_buffer=(0.0, 0.0), met_time_buffer=(np.timedelta64(0, 'h'), np.timedelta64(0, 'h')), rhi_threshold=1.0, humidity_scaling=None, engine_efficiency=0.3, fuel=<factory>)¶
Bases:
SACParams
,ISSRParams
Persistent Contrail Regions (PCR) parameters.
- as_dict()¶
Convert object to dictionary.
We use this method instead of dataclasses.asdict to use a shallow/unrecursive copy. This will return values as Any instead of dict.
- Returns:
dict[str
,Any]
– Dictionary version of self.
- copy_source = True¶
Copy input
source
data on eval
- downselect_met = True¶
Downselect input
MetDataset`
to region aroundsource
.
- engine_efficiency = 0.3¶
Jet engine efficiency, [\(0 - 1\)]
- fuel¶
Fuel type. Overridden by Fuel provided on input
source
attributes
- humidity_scaling = None¶
Humidity scaling
- interpolation_bounds_error = False¶
If True, points lying outside interpolation will raise an error
- interpolation_fill_value = nan¶
Used for outside interpolation value if
interpolation_bounds_error
is False
- interpolation_localize = False¶
Experimental. See
pycontrails.core.interpolation
.
- interpolation_method = 'linear'¶
Interpolation method. Supported methods include “linear”, “nearest”, “slinear”, “cubic”, and “quintic”. See
scipy.interpolate.RegularGridInterpolator
for the description of each method. Not all methods are supported by all met grids. For example, the “cubic” method requires at least 4 points per dimension.
- interpolation_q_method = None¶
Experimental. Alternative interpolation method to account for specific humidity lapse rate bias. Must be one of
None
,"cubic-spline"
, or"log-q-log-p"
. IfNone
, no special interpolation is used for specific humidity. The"cubic-spline"
method applies a custom stretching of the met interpolation table to account for the specific humidity lapse rate bias. The"log-q-log-p"
method interpolates in the log of specific humidity and pressure, then converts back to specific humidity. Only used by models calling tointerpolate_met()
.
- interpolation_use_indices = False¶
Experimental. See
pycontrails.core.interpolation
.
- met_latitude_buffer = (0.0, 0.0)¶
Met latitude buffer for input to
Flight.downselect_met()
, in WGS84 coordinates. Only applies whendownselect_met
is True.
- met_level_buffer = (0.0, 0.0)¶
Met level buffer for input to
Flight.downselect_met()
, in [\(hPa\)]. Only applies whendownselect_met
is True.
- met_longitude_buffer = (0.0, 0.0)¶
Met longitude buffer for input to
Flight.downselect_met()
, in WGS84 coordinates. Only applies whendownselect_met
is True.
- met_time_buffer = (np.timedelta64(0,'h'), np.timedelta64(0,'h'))¶
Met time buffer for input to
Flight.downselect_met()
Only applies whendownselect_met
is True.
- rhi_threshold = 1.0¶
RHI Threshold
- verify_met = True¶
Call
_verify_met()
on model instantiation.
- pycontrails.models.pcr.pcr(air_temperature, specific_humidity, air_pressure, engine_efficiency, ei_h2o, q_fuel)¶
Calculate regions of persistent contrail formation.
Ice Super Saturated Regions (ISSR) where the Schmidt-Appleman Criteria (SAC) is satisfied.
Parameters of type
ArrayLike
must have compatible shapes.- Parameters:
air_temperature (
ArrayLike
) – A sequence or array of temperature values, [\(K\)]specific_humidity (
ArrayLike
) – A sequence or array of specific humidity values, [\(kg_{H_{2}O} \ kg_{air}^{-1}\)]air_pressure (
ArrayLike
) – A sequence or array of atmospheric pressure values, [\(Pa\)].engine_efficiency (
float | ArrayLike
) – Engine efficiency, [\(0 - 1\)]ei_h2o (
float
) – Emission index of water vapor, [\(kg \ kg^{-1}\)]q_fuel (
float
) – Specific combustion heat of fuel combustion, [\(J \ kg^{-1} \ K^{-1}\)]
- Returns: