pycontrails.models.ps_model.PSGrid

class pycontrails.models.ps_model.PSGrid(met=None, params=None, **params_kwargs)

Bases: AircraftPerformanceGrid

Compute nominal Poll-Schumann aircraft performance over a grid.

For a given aircraft type, altitude, aircraft mass, air temperature, and mach number, the PS model computes a theoretical engine efficiency and fuel flow rate for an aircraft under cruise conditions. Letting the aircraft mass vary and fixing the other parameters, the engine efficiency curve attains a single maximum at a particular aircraft mass. By solving this implicit equation, the PS model can be used to compute the aircraft mass that maximizes engine efficiency for a given set of parameters. This is the “nominal” aircraft mass computed by this model.

This nominal aircraft mass is not always realizable. For example, the maximum engine efficiency may be attained at an aircraft mass that is less than the operating empty mass of the aircraft. This model determines the minimum and maximum possible aircraft mass for a given set of parameters using a simple heuristic. The nominal aircraft mass is then clipped to this range.

__init__(met=None, params=None, **params_kwargs)

Methods

__init__([met, params])

downselect_met()

Downselect met domain to the max/min bounds of source.

eval([source])

Evaluate the PS model over a MetDataset or GeoVectorDataset.

get_source_param(key[, default, set_attr])

Get source data with default set by parameter key.

require_met()

Ensure that met is a MetDataset.

require_source_type(type_)

Ensure that source is type_.

set_source([source])

Attach original or copy of input source to source.

set_source_met([optional, variable])

Ensure or interpolate each required met_variables on source .

transfer_met_source_attrs([source])

Transfer met source metadata from met to source.

update_params([params])

Update model parameters on params.

Attributes

met

Meteorology data

params

Instantiated model parameters, in dictionary form

source

Data evaluated in model

hash

Generate a unique hash for model instance.

interp_kwargs

Shortcut to create interpolation arguments from params.

long_name

met_required

Require meteorology is not None on __init__()

met_variables

Required meteorology pressure level variables.

name

processed_met_variables

Set of required parameters if processing already complete on met input.

optional_met_variables

Optional meteorology variables

default_params

alias of PSGridParams

downselect_met()

Downselect met domain to the max/min bounds of source.

Override this method if special handling is needed in met down-selection.

  • source must be defined before calling downselect_met().

  • This method copies and re-assigns met using met.copy() to avoid side-effects.

Raises:
eval(source=None, **params)

Evaluate the PS model over a MetDataset or GeoVectorDataset.

Parameters:
  • source (GeoVectorDataset | MetDataset | None, optional) – The source data to use for the evaluation. If None, the source is taken from the met attribute of the PSGrid instance. The aircraft type is taken from source.attrs["aircraft_type"]. If this field is not present, params["aircraft_type"] is used instead. See the static CSV file ps-aircraft-params-20240524.csv for a list of supported aircraft types.

  • **params (Any) – Override the default parameters of the PSGrid instance.

Returns:

GeoVectorDataset | MetDataset

The source data with the following variables added:

  • aircraft_mass

  • fuel_flow

  • engine_efficiency

Raises:

NotImplementedError – If “true_airspeed” or “aircraft_mass” fields are included in source.

get_source_param(key, default=<object object>, *, set_attr=True)

Get source data with default set by parameter key.

Retrieves data with the following hierarchy:

  1. source.data[key]. Returns np.ndarray | xr.DataArray.

  2. source.attrs[key]

  3. params[key]

  4. default

In case 3., the value of params[key] is attached to source.attrs[key].

Parameters:
  • key (str) – Key to retrieve

  • default (Any, optional) – Default value if key is not found.

  • set_attr (bool, optional) – If True (default), set source.attrs[key] to params[key] if found. This allows for better post model evaluation tracking.

Returns:

Any – Value(s) found for key in source data, source attrs, or model params

Raises:

KeyError – Raises KeyError if key is not found in any location and default is not provided.

See also

-

property hash

Generate a unique hash for model instance.

Returns:

str – Unique hash for model instance (sha1)

property interp_kwargs

Shortcut to create interpolation arguments from params.

The output of this is useful for passing to interpolate_met().

Returns:

dict[str, Any] – Dictionary with keys

  • ”method”

  • ”bounds_error”

  • ”fill_value”

  • ”localize”

  • ”use_indices”

  • ”q_method”

as determined by params.

long_name = 'Poll-Schumann Aircraft Performance evaluated at arbitrary points'
met

Meteorology data

met_required = False

Require meteorology is not None on __init__()

met_variables = (MetVariable(short_name='t', standard_name='air_temperature', long_name='Air Temperature', level_type='isobaricInhPa', ecmwf_id=130, grib1_id=11, grib2_id=(0, 0, 0), units='K', amip='ta', description='Air temperature is the bulk temperature of the air, not the surface (skin) temperature.'),)

Required meteorology pressure level variables. Each element in the list is a MetVariable or a tuple[MetVariable]. If element is a tuple[MetVariable], the variable depends on the data source. Only one variable in the tuple is required.

name = 'PSGrid'
optional_met_variables

Optional meteorology variables

params

Instantiated model parameters, in dictionary form

processed_met_variables

Set of required parameters if processing already complete on met input.

require_met()

Ensure that met is a MetDataset.

Returns:

MetDataset – Returns reference to met. This is helpful for type narrowing met when meteorology is required.

Raises:

ValueError – Raises when met is None.

require_source_type(type_)

Ensure that source is type_.

Returns:

_Source – Returns reference to source. This is helpful for type narrowing source to specific type(s).

Raises:

ValueError – Raises when source is not _type_.

set_source(source=None)

Attach original or copy of input source to source.

Parameters:

source (MetDataset | GeoVectorDataset | Flight | Iterable[Flight] | None) – Parameter source passed in eval(). If None, an empty MetDataset with coordinates like met is set to source.

See also

-

meth:eval

set_source_met(optional=False, variable=None)

Ensure or interpolate each required met_variables on source .

For each variable in met_variables, check source for data variable with the same name.

For GeoVectorDataset sources, try to interpolate met if variable does not exist.

For MetDataset sources, try to get data from met if variable does not exist.

Parameters:
Raises:
source

Data evaluated in model

transfer_met_source_attrs(source=None)

Transfer met source metadata from met to source.

update_params(params=None, **params_kwargs)

Update model parameters on params.

Parameters:
  • params (dict[str, Any], optional) – Model parameters to update, as dictionary. Defaults to {}

  • **params_kwargs (Any) – Override keys in params with keyword arguments.