pycontrails.GeoVectorDataset¶
- class pycontrails.GeoVectorDataset(data=None, *, longitude=None, latitude=None, altitude=None, altitude_ft=None, level=None, time=None, attrs=None, copy=True, **attrs_kwargs)¶
Bases:
VectorDataset
Base class to hold 1D geospatial arrays of consistent size.
GeoVectorDataset is required to have geospatial coordinate keys defined in
required_keys
.Expect latitude-longitude CRS in WGS 84. Expect altitude in [\(m\)]. Expect level in [\(hPa\)].
Each spatial variable is expected to have “float32” or “float64”
dtype
. The time variable is expected to have “datetime64[ns]”dtype
.Use the attribute
attr["crs"]
to specify coordinate reference system using PROJ or EPSG syntax.- Parameters:
data (
dict[str
,npt.ArrayLike] | pd.DataFrame | VectorDataDict | VectorDataset | None
, optional) – Data dictionary orpandas.DataFrame
. Must include keys/columnstime
,latitude
,longitude
,altitude
orlevel
. Keyword arguments fortime
,latitude
,longitude
,altitude
orlevel
overridedata
inputs. Expectsaltitude
in meters andtime
as a DatetimeLike (or array that can processed withpd.to_datetime()
). Additional waypoint-specific data can be included as additional keys/columns.longitude (
npt.ArrayLike
, optional) – Longitude data. Defaults to None.latitude (
npt.ArrayLike
, optional) – Latitude data. Defaults to None.altitude (
npt.ArrayLike
, optional) – Altitude data, [\(m\)]. Defaults to None.altitude_ft (
npt.ArrayLike
, optional) – Altitude data, [\(ft\)]. Defaults to None.level (
npt.ArrayLike
, optional) – Level data, [\(hPa\)]. Defaults to None.time (
npt.ArrayLike
, optional) – Time data. Expects an array of DatetimeLike values, or array that can processed withpd.to_datetime()
. Defaults to None.attrs (
dict[Hashable
,Any] | AttrDict
, optional) – Additional properties as a dictionary. Defaults to {}.copy (
bool
, optional) – Copy data on class creation. Defaults to True.**attrs_kwargs (
Any
) – Additional properties passed as keyword arguments.
- Raises:
KeyError – Raises if
data
input does not contain at leasttime
,latitude
,longitude
, (altitude
orlevel
).
- __init__(data=None, *, longitude=None, latitude=None, altitude=None, altitude_ft=None, level=None, time=None, attrs=None, copy=True, **attrs_kwargs)¶
Methods
T_isa
()Calculate the ICAO standard atmosphere temperature at each point.
__init__
([data, longitude, latitude, ...])broadcast_attrs
(keys[, overwrite, raise_error])Attach values from
keys
inattrs
ontodata
.broadcast_numeric_attrs
([ignore_keys, overwrite])Attach numeric values in
attrs
ontodata
.coords_intersect_met
(met)Return boolean mask of data inside the bounding box defined by
met
.copy
(**kwargs)Return a copy of this VectorDatasetType class.
create_empty
([keys, attrs])Create instance with variables defined by keys and size 0.
downselect_met
(met, *[, longitude_buffer, ...])Downselect
met
to encompass a spatiotemporal region of the data.ensure_vars
(vars[, raise_error])Ensure variables exist in column of
data
orattrs
.filter
(mask[, copy])Filter
data
according to a boolean arraymask
.from_dict
(obj[, copy])Create instance from dict representation containing data and attrs.
generate_splits
(n_splits[, copy])Split instance into
n_split
sub-vectors.get
(key[, default_value])Get values from
data
withdefault_value
ifkey
not indata
.get_data_or_attr
(key[, default])Get value from
data
orattrs
.intersect_met
(mda, *[, longitude, latitude, ...])Intersect waypoints with MetDataArray.
select
(keys[, copy])Return new class instance only containing specified keys.
setdefault
(key[, default])Shortcut to
VectorDataDict.setdefault()
.sort
(by)Sort data by key(s).
sum
(vectors[, infer_attrs, fill_value])Sum a list of
VectorDataset
instances.to_dataframe
([copy])Create
pd.DataFrame
in which each key-value pair indata
is a column.to_dict
()Create dictionary with
data
andattrs
.Return dataset as GeoJSON FeatureCollection of Points.
to_lon_lat_grid
(agg, *[, spatial_bbox, ...])Convert vectors to a longitude-latitude grid.
to_pseudo_mercator
([copy])Convert data from
attrs["crs"]
to Pseudo Mercator (EPSG:3857).transform_crs
(crs[, copy])Transform trajectory data from one coordinate reference system (CRS) to another.
update
([other])Update values in
data
dict without warning if overwriting.Attributes
Get
air_pressure
values for points.Get altitude.
Get altitude in feet.
attrs
Generic dataset attributes
Return a dictionary of constant attributes and data values.
Get geospatial coordinates for compatibility with MetDataArray.
data
Vector data with labels as keys and
numpy.ndarray
as valuesdataframe
Shorthand property to access
to_dataframe()
withcopy=False
.hash
Generate a unique hash for this class instance.
Get pressure
level
values for points.Required keys for creating GeoVectorDataset
shape
Shape of each array in
data
.size
Length of each array in
data
.At least one of these vertical-coordinate keys must also be included
- T_isa()¶
Calculate the ICAO standard atmosphere temperature at each point.
- Returns:
npt.NDArray[np.float64]
– ISA temperature, [\(K\)]
- property air_pressure¶
Get
air_pressure
values for points.- Returns:
npt.NDArray[np.float64]
– Point air pressure values, [\(Pa\)]
- property altitude¶
Get altitude.
Automatically calculates altitude using
units.pl_to_m()
usinglevel
key.Note that if
altitude
key exists indata
, the data at thealtitude
key will be returned. This allows an override of the default calculation of altitude from pressure level.- Returns:
npt.NDArray[np.float64]
– Altitude, [\(m\)]
- property altitude_ft¶
Get altitude in feet.
- Returns:
npt.NDArray[np.float64]
– Altitude, [\(ft\)]
- property constants¶
Return a dictionary of constant attributes and data values.
Includes
attrs
and values from columns indata
with a unique value.- Returns:
dict[str
,Any]
– Properties and their constant values
- property coords¶
Get geospatial coordinates for compatibility with MetDataArray.
- Returns:
pandas.DataFrame
–pd.DataFrame
with columns longitude, latitude, level, and time.
- coords_intersect_met(met)¶
Return boolean mask of data inside the bounding box defined by
met
.- Parameters:
met (
MetDataset | MetDataArray
) – MetDataset or MetDataArray to compare.- Returns:
npt.NDArray[np.bool_]
– True if point is inside the bounding box defined bymet
.
- classmethod create_empty(keys=None, attrs=None, **attrs_kwargs)¶
Create instance with variables defined by keys and size 0.
If instance requires additional variables to be defined, these keys will automatically be attached to returned instance.
- Parameters:
keys (
Iterable[str]
) – Keys to include in empty VectorDataset instance.attrs (
dict[str
,Any] | None
, optional) – Attributes to attach instance.**attrs_kwargs (
Any
) – Define attributes as keyword arguments.
- Returns:
VectorDatasetType
– Empty VectorDataset instance.
- downselect_met(met, *, longitude_buffer=(0.0, 0.0), latitude_buffer=(0.0, 0.0), level_buffer=(0.0, 0.0), time_buffer=(np.timedelta64(0, 'h'), np.timedelta64(0, 'h')), copy=True)¶
Downselect
met
to encompass a spatiotemporal region of the data.- Parameters:
met (
MetDataset | MetDataArray
) – MetDataset or MetDataArray to downselect.longitude_buffer (
tuple[float
,float]
, optional) – Extend longitude domain past bylongitude_buffer[0]
on the low side andlongitude_buffer[1]
on the high side. Units must be the same as class coordinates. Defaults to(0, 0)
degrees.latitude_buffer (
tuple[float
,float]
, optional) – Extend latitude domain past bylatitude_buffer[0]
on the low side andlatitude_buffer[1]
on the high side. Units must be the same as class coordinates. Defaults to(0, 0)
degrees.level_buffer (
tuple[float
,float]
, optional) – Extend level domain past bylevel_buffer[0]
on the low side andlevel_buffer[1]
on the high side. Units must be the same as class coordinates. Defaults to(0, 0)
[\(hPa\)].time_buffer (
tuple[np.timedelta64
,np.timedelta64]
, optional) – Extend time domain past bytime_buffer[0]
on the low side andtime_buffer[1]
on the high side. Units must be the same as class coordinates. Defaults to(np.timedelta64(0, "h"), np.timedelta64(0, "h"))
.copy (
bool
) – If returned object is a copy or view of the original. True by default.
- Returns:
MetDataset | MetDataArray
– Copy of downselected MetDataset or MetDataArray.
- intersect_met(mda, *, longitude=None, latitude=None, level=None, time=None, use_indices=False, **interp_kwargs)¶
Intersect waypoints with MetDataArray.
- Parameters:
mda (
MetDataArray
) – MetDataArray containing a meteorological variable at spatio-temporal coordinates.longitude (
npt.NDArray[np.float64]
, optional) – Override existing coordinates for met interpolationlatitude (
npt.NDArray[np.float64]
, optional) – Override existing coordinates for met interpolationlevel (
npt.NDArray[np.float64]
, optional) – Override existing coordinates for met interpolationtime (
npt.NDArray[np.datetime64]
, optional) – Override existing coordinates for met interpolationuse_indices (
bool
, optional) – Experimental.**interp_kwargs (
Any
) – Additional keyword arguments to pass toMetDataArray.intersect_met()
. Examples includemethod
,bounds_error
, andfill_value
. If an error such asValueError: One of the requested xi is out of bounds in dimension 2
occurs, try calling this function with
bounds_error=False
. In addition, settingfill_value=0.0
will replace NaN values with 0.0.
- Returns:
npt.NDArray[np.float64]
– Interpolated values
Examples
>>> from datetime import datetime >>> import pandas as pd >>> import numpy as np >>> from pycontrails.datalib.ecmwf import ERA5 >>> from pycontrails import Flight
>>> # Get met data >>> times = (datetime(2022, 3, 1, 0), datetime(2022, 3, 1, 3)) >>> variables = ["air_temperature", "specific_humidity"] >>> levels = [300, 250, 200] >>> era5 = ERA5(time=times, variables=variables, pressure_levels=levels) >>> met = era5.open_metdataset()
>>> # Example flight >>> df = pd.DataFrame() >>> df['longitude'] = np.linspace(0, 50, 10) >>> df['latitude'] = np.linspace(0, 10, 10) >>> df['altitude'] = 11000 >>> df['time'] = pd.date_range("2022-03-01T00", "2022-03-01T02", periods=10) >>> fl = Flight(df)
>>> # Intersect >>> fl.intersect_met(met['air_temperature'], method='nearest') array([231.62969892, 230.72604651, 232.24318771, 231.88338483, 231.06429438, 231.59073409, 231.65125393, 231.93064004, 232.03344087, 231.65954432])
>>> fl.intersect_met(met['air_temperature'], method='linear') array([225.77794552, 225.13908414, 226.231218 , 226.31831528, 225.56102321, 225.81192149, 226.03192642, 226.22056121, 226.03770174, 225.63226188])
>>> # Interpolate and attach to `Flight` instance >>> for key in met: ... fl[key] = fl.intersect_met(met[key])
>>> # Show the final three columns of the dataframe >>> fl.dataframe.iloc[:, -3:].head() time air_temperature specific_humidity 0 2022-03-01 00:00:00 225.777946 0.000132 1 2022-03-01 00:13:20 225.139084 0.000132 2 2022-03-01 00:26:40 226.231218 0.000107 3 2022-03-01 00:40:00 226.318315 0.000171 4 2022-03-01 00:53:20 225.561022 0.000109
- property level¶
Get pressure
level
values for points.Automatically calculates pressure level using
units.m_to_pl()
usingaltitude
key.Note that if
level
key exists indata
, the data at thelevel
key will be returned. This allows an override of the default calculation of pressure level from altitude.- Returns:
npt.NDArray[np.float64]
– Point pressure level values, [\(hPa\)]
- required_keys = ('longitude', 'latitude', 'time')¶
Required keys for creating GeoVectorDataset
- to_geojson_points()¶
Return dataset as GeoJSON FeatureCollection of Points.
Each Feature has a properties attribute that includes
time
and other data besideslatitude
,longitude
, andaltitude
indata
.- Returns:
dict[str
,Any]
– Python representation of GeoJSON FeatureCollection
- to_lon_lat_grid(agg, *, spatial_bbox=(-180.0, -90.0, 180.0, 90.0), spatial_grid_res=0.5)¶
Convert vectors to a longitude-latitude grid.
See also
vector_to_lon_lat_grid
- to_pseudo_mercator(copy=True)¶
Convert data from
attrs["crs"]
to Pseudo Mercator (EPSG:3857).- Parameters:
copy (
bool
, optional) – Copy data on transformation. Defaults to True.- Returns:
GeoVectorDatasetType
- transform_crs(crs, copy=True)¶
Transform trajectory data from one coordinate reference system (CRS) to another.
- Parameters:
- Returns:
GeoVectorDatasetType
– Converted dataset with new coordinate reference system.attrs["crs"]
reflects new crs.
- vertical_keys = ('altitude', 'level', 'altitude_ft')¶
At least one of these vertical-coordinate keys must also be included