pycontrails.ext.bada.BADAGrid¶
- class pycontrails.ext.bada.BADAGrid(met=None, params=None, **params_kwargs)¶
Bases:
AircraftPerformanceGrid
Compute nominal BADA values for a large grid of independent points.
This model automatically corrects engine efficiency values to ensure that they remain realistic by clipping to a nominal grid of BADA-derived values.
- Parameters:
met (
MetDataset | None
, optional) – Dataset containing “air_temperature” variable. Only used if these variables are not already found on parametersource
ineval()
. By default None.params (
dict[str
,Any]
, optional) – Override model parameters with dictionary. SeeBADAGridParams
for model parameters.**params_kwargs – Override model parameters with keyword arguments. See
BADAFlightParams
for model parameters.
See also
-
meth:eval
-
class:BADAGridParams
- __init__(met=None, params=None, **params_kwargs)¶
Methods
__init__
([met, params])downselect_met
()eval
([source])Extract aircraft properties and calculate the fuel consumption.
get_source_param
(key[, default, set_attr])Get source data with default set by parameter key.
require_met
()Ensure that
met
is a MetDataset.require_source_type
(type_)Ensure that
source
istype_
.set_source
([source])Attach original or copy of input
source
tosource
.set_source_met
([optional, variable])Ensure or interpolate each required
met_variables
onsource
.transfer_met_source_attrs
([source])Transfer met source metadata from
met
tosource
.update_params
([params])Update model parameters on
params
.Attributes
Instantiated model parameters, in dictionary form
Meteorology data
Evaluated data source
hash
Generate a unique hash for model instance.
interp_kwargs
Shortcut to create interpolation arguments from
params
.met_required
Require meteorology is not None on __init__()
Required meteorology pressure level variables.
Optional meteorology variables
processed_met_variables
Set of required parameters if processing already complete on
met
input.- default_params¶
alias of
BADAGridParams
- eval(source=None, **params)¶
Extract aircraft properties and calculate the fuel consumption.
- Parameters:
source (
GeoVectorDataset | None
, optional) – Vector dataset defining coordinates to evaluate model. If None, the coordinates ofmet
are used as evaluation points.**params (
Any
) – Overwrite model parameters before eval
- Returns:
-
Data with variables:
”engine_efficiency”
”true_airspeed”
”fuel_flow”
”thrust”
”aircraft_mass”
and attributes:
”aircraft_type”
”bada_model”
”aircraft_type_bada”
”wingspan”
”max_mach”
”max_altitude”
”engine_name”
”n_engine”
- long_name = 'Base of aircraft data evaluated at arbitrary points'¶
- met¶
Meteorology data
- met_variables = (MetVariable(short_name='t', standard_name='air_temperature', long_name='Air Temperature', level_type='isobaricInhPa', ecmwf_id=130, grib1_id=11, grib2_id=(0, 0, 0), units='K', amip='ta', description='Air temperature is the bulk temperature of the air, not the surface (skin) temperature.'),)¶
Required meteorology pressure level variables. Each element in the list is a
MetVariable
or atuple[MetVariable]
. If element is atuple[MetVariable]
, the variable depends on the data source. Only one variable in the tuple is required.
- name = 'bada-points'¶
- optional_met_variables = (MetVariable(short_name='u', standard_name='eastward_wind', long_name='Eastward Wind', level_type='isobaricInhPa', ecmwf_id=131, grib1_id=33, grib2_id=(0, 2, 2), units='m s**-1', amip='ua', description='"Eastward" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component.'), MetVariable(short_name='v', standard_name='northward_wind', long_name='Northward Wind', level_type='isobaricInhPa', ecmwf_id=132, grib1_id=34, grib2_id=(0, 2, 3), units='m s**-1', amip='va', description='"Northward" indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component.'))¶
Optional meteorology variables
- params¶
Instantiated model parameters, in dictionary form
- source¶
Evaluated data source